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Abstract

THIS document summarizes the state-of-the-art algorithms for solving effective-

field (averaged) multi-fluid equations for multiphase flows, used in reactor-

safety codes. The main purpose is to outline and analyze all the major solution

algorithms developed in the past 40 years, widely used in legacy reactor thermal-

hydraulics codes (RELAP5, TRAC/TRACE, CATHARE) and commercial CFD

codes (SIMPLE-based). This will provide the base for implementation of the effi-

cient solution strategy in Hydra-TH code, that is being developed under the Con-

sortium for Advanced Simulation of Light-Water Reactors (CASL) in Los Alamos

National Laboratory.
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Chapter 1

Introduction

IN this document, we review the solution strategies for solving the system of

governing equations for effective-field formulation of multi-fluid/multi-phase

flows. These equations were developed in late 60s [Del68, IH06, Nig90, DP99],

and are widely used in nuclear reactor safety and thermalhydraulics analysis, as

well as for other multiphase-flow applications in oil and aerospace industries,

geoscience, advanced weaponry, etc. The main motivation for this study is to

develop the best solution algorithm for implementation N -fluid model in Hydra-

TH code, being developed at Los Alamos National Laboratory under the auspices

of the Consortium for Advanced Simulation of Light-Water Reactors (CASL) for

thermal-hydraulics applications in nuclear industry.

The manuscript is organized as follows.

First, we summarize the governing equations for N -fluid multiphase flows,

in Chapter 2. The focus is placed on the PDE part of governing equations, de-

veloped using homogenization with ensemble-averaging. This is the most nu-

merically challenging part of the model, which directly affect the choice of the

solution strategy, including space and time discretization. We presume that the set

of closure models is defined, and we leave the discussion of the proper constitu-

tive physics to other future study.

We divide the algorithms on four major distinct groups, Figure 1.1:

I. Explicit algorithms (Chapter 3),

II. Operator-Splitting algorithms (Chapter 4),

2
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Fig. 1.1 : On relation of the discussed algorithms.



4 CHAPTER 1. INTRODUCTION

III. Segregated (fully-implicit) algorithms (Chapter 5), and

IV. Newton-based algorithms (Chapter 6).

The algorithms discussed in Chapter 4 (operator-splitting, “semi-implicit”) are

the closest to what is currently used in single-phase models of Hydra-TH, and this

is our first choice for multi-phase flow implementation. This provides very im-

portant building block for fully-implicit algorithms within either Picard-iteration

(Chapter 5) or Newton-based (Chapter 6) solution strategies. The innovative part

is the development of incremental form of the “semi-implicit” method, which

introduced in Section 4.3. Here, we provide the detail derivation, as well as pre-

liminary analysis for solvability and well-posedness.

Finally, we discuss and review another challenging issue – the solution strat-

egy for phase appearance and disappearance, in Chapter 7. While no definite and

fully-satisfactory strategy for this problem currently exists, the provided discus-

sion and analysis is an important step in the devising the one. This will be the

focus of future study.
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Chapter 2

Governing Equations

IN this chapter, we summarize the governing averaged equations for N -fluid

formulation. We will follow the ensemble-averaging procedure described by

Drew and Passman in [DP99]. The other homogenization (time- [IH06], volume-

[Del68, Nig90] averaging) techniques result in the similar set of governing equa-

tions.

2.1 Ensemble-Averaging

The average variables are defined using the following ensemble-averaging opera-

tor

Φ̄ (x, t) =
∫
E
Φ (x, t;μ) dm (μ) (2.1)

where dm (·) is the density for the measure (probability) on the set of all pro-

cesses E . Another important definition is the component indicator function (or

characteristic function), X
k
(x, t;μ):

X
k
(x, t;μ) =

{
1 if x ∈ k in realization μ
0 otherwise

(2.2)

6



2.2. BALANCE EQUATIONS 7

2.2 Balance Equations
Ensemble-averaged balance equations for multi-component fluids (k=0.,..,K−1) are1,2

[DP99]:

Mass:
∂α

k
ρ̄
k

∂t
+∇ · (α

k
ρ̄

k
ṽ

k
) = Γ

k

(2.3)

Momentum:
∂α

k
ρ̄
k
ṽ
k

∂t
+∇ · (α

k
[ρ̄

k
ṽ

k
⊗ ṽ

k
+ p̄

k
]) = α

k
ρ̄

k
b̃

k
+ v

m

ki
Γ

k
+

+∇ ·
(
α

k

[
τ̄
k
+ T

Re

k

])
+
(
p
ki

− τ
ki

)
∇α

k
+ M

′
k

(2.4)

Total energy:
∂
∂t

(
α

k
ρ̄

k
ẽ
k

)
+∇ · (α

k
[ρ̄

k
ẽ
k
+ p̄

k
] ṽ

k
) = α

k
ρ̄

k

(
r̃
k
+ b̃

k
· ṽ

k

)
+

∇ ·
(
α

k

[
ṽ

k

(
τ̄
k
+ T

Re

k

)
− q̄

k
− q

Re

k

])

+ Γ
k

⎛
⎜⎜⎝ u

ki
+

(
v

e

ki

)2

2

⎞
⎟⎟⎠+ E

k

+ W
′
k
+ M

′
k
· ṽ

k
+
(
p
ki

− τ
ki

)
ṽ

k
· ∇α

k

(2.5)

Fluctuation kinetic energy:
∂(αk

ρ̄
k
κ̃
k)

∂t
+∇ · (α

k
ρ̄

k
ṽ

k
κ̃

k
) = α

k
T

Re

k
: ∇ṽ

k
−∇ · α

k

(
q

K

k
+ q

T

k

)
+

+1
2

[(
v

e

ki

)2
+ (|ṽ

k
|)2 − ṽ

k
· v

m

ki

]
Γ

k
+ W

′
k
+ α

k

(
D

k
− P

k

) (2.6)

Complemented by equations of state for each phase EOS
k

and constitutive

physics for terms shown in boxes (see Section 2.4), these balance equations define

a complete closed form for multi-fluid dynamics of inter-penetrating continua.

1The terms requiring closure are shown in boxes.
2On vector notation, see Chapter A.
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2.3 Averaged variables
The averaged variables in eqs.(2.3)-(2.6) are defined as follows.

Volume fraction:

α
k
= X

k
(2.7)

Phasic density:

ρ̄
k
=

X
k
ρ

α
k

(2.8)

Phasic velocity:

ṽ
k
=

X
k
ρv

α
k
ρ̄
k

(2.9)

Phasic specific internal energy:

ũ
k
=

X
k
ρu

α
k
ρ̄
k

(2.10)

Phasic fluctuation (Reynolds) kinetic energy:

κ̃
k
=

X
k
ρ|v′

k
|2

2α
k
ρ̄
k

, v
′
k
= v − ṽ

k
(2.11)

where by (̃·) we denote mass-weighted (or Fevré) averaged quantities.

Phasic total energy:

ẽ
k
= ũ

k
+

|ṽk |2
2

+ κ̃
k

(2.12)

Phasic pressure. Pressures are given by equations of state formulated in terms of

phasic quantities:

p̄k = EOS (ρ̄
k
, ũ

k
) (2.13)

which together with compatibility equation∑
k

α
k
= 1

(2.14)

completes problem formulation.
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2.4 Closures
The system of eqs.(2.3)-(2.6) requires closure in terms of constitutive physics for

the terms shown in boxes. These are the following.

Interfacial mass generation source:

Γ
k
= ρ (v − v

i
) · ∇X

k
(2.15)

where v
i

is velocity of the interface.

Phasic body force:

b̃
k
=

X
k
ρb

α
k
ρ̄
k

(2.16)

Interfacial momentum source:

v
m

ki
=

ρv(v−vi)·∇X
k

Γ
k

(2.17)

Interfacial internal energy source:

u
ki
=

ρu(v−vi)·∇X
k

Γ
k

(2.18)

Interfacial heat source:

E
k
= q · ∇X

k
(2.19)

Interfacial kinetic energy source:

v
e

ki
=

√
ρ|vk |2(v−vi)·∇X

k

Γ
k

(2.20)

Phasic viscous stress:

τ̄
k
=

X
k
τ

α
k

(2.21)
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Interfacial pressure:

p
ki
=

pn
k
·∇X

k

ai (2.22)

where n
k

and a
i

are interfacial unit normal and area.

Interfacial viscous stress:

τ
ki
=

τ
k
n
k
·∇X

k

ai (2.23)

Phasic Reynolds stress:

T
Re

k
= −X

k
ρv

′
k
v
′
k

α
k

(2.24)

Interfacial extra momentum source:

M
′
k
= −T′

ki
· ∇X

k
(2.25)

where

T
′
ki
= − (p− p

ki
) I+ (τ − τ

ki
) (2.26)

Phasic energy source:

r̃
k
=

X
k
ρr

α
k
ρ̄
k

(2.27)

where r is volumetric energy source.

Phasic energy flux:

q̄
k
=

X
k
q

α
k

(2.28)

Phasic fluctuation (Reynolds) energy flux:

q
Re

k
= q̂

Re

k
+ q

T

k
+ q

K

k
(2.29)
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Phasic fluctuation (Reynolds) kinetic energy flux:

q
K

k
=

X
k
ρv′

k

|v′k |2
2

α
k

(2.30)

Phasic fluctuation (Reynolds) shear working:

q
T

k
= −X

k
T·v′

k

α
k (2.31)

Phasic fluctuation (Reynolds) internal energy flux:

q̂
Re

k
=

X
k
ρv

′
k
u
′
k

α
k (2.32)

Interfacial extra working:

W
′
k
= −T · v′

k
· ∇X

k
(2.33)

Phasic internal dissipation:

D
k
=

X
k
τ :∇v′

k

α
k (2.34)

Phasic pressure working:

P
k
=

X
k
p∇·v′

k

α
k (2.35)

Typically, a set of explicit algebraic formulas - “closure laws”, for eqs. (2.15)-

(2.35) must be provided to complete mathematical formulations. This set must

also be constrained by the following (“jump”) compatibility conditions:∑
k

Γ
k
= 0 (2.36)

∑
k

(
M

′
k
+ v

m

ki
+ (p

ki
− τ

ki
)∇α

k

)
= m (2.37)

and ∑
k

(
E

k
+W

′
k
+M

k
· ṽ

k
+

(
u

ki
+

(v
e

ki
)
2

2

)
Γ

k

)
= ε (2.38)

where m and ε are the surface tension source and the interfacial energy source,

correspondingly.
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2.5 Entropy inequality
Entropy inequality is defined by the following equation:

∂(αk
ρ̄
k
s̃
k)

∂t
+∇ · (α

k
ρ̄

k
ṽ

k
s̃
k
) ≥ ∇ ·

(
α

k

(
φ̄

k
+ φ

Re

k

))
+α

k
ρ̄

k
Σ̃

k
+ S

k
+ s

ki
Γ

k

(2.39)

the averaged quantities are defined as follows.

Phasic entropy:

s̃
k
=

X
k
ρs

α
k
ρ̄
k

(2.40)

Phasic entropy flux:

φ̄
k
=

X
k
q/θ

α
k

(2.41)

where θ is temperature.

Phasic fluctuation (Reynolds) kinetic energy:

φ
Re

k
= −X

k
ρsv

′
k

α
k

(2.42)

Phasic entropy source:

Σ̃
k
=

X
k
ρr/θ

α
k
ρ̄
k

(2.43)

Interfacial entropy source:

S
k
=

q

θ
· ∇X

k
(2.44)

Interfacial entropy source:

s
ki
=

ρs(v−vi)·∇X
k

Γ
k

(2.45)
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2.6 Two-fluid equations
Without loss of generality, in the following Chapters, we will discuss two-field

formulation (k=0,1), ignoring turbulence models and viscous stresses, and focus

on PDE part of the most common formulation:

Mass:
∂(αρ̄0)

∂t
+∇ · (αρ̄0ṽ0) = Smass,0 (U)

∂((1−α)ρ̄1)
∂t

+∇ · ((1− α) ρ̄1ṽ1) = Smass,1 (U)

(2.46)

Momentum:
∂(αρ̄0 ṽ0)

∂t
+∇ · (α [ρ̄0ṽ0 ⊗ ṽ0 + p̄]) =⎡
⎣p̄− ξ (U) ρ̄cΔU

2︸ ︷︷ ︸
Interfacial dynamic pressure

⎤
⎦∇α− μ (U) ρ̄c

d
d
Δ
U

dt︸ ︷︷ ︸
Added mass

+ Smom,0 (U)

∂((1−α)ρ̄1 ṽ1)
∂t

+∇ ·

⎛
⎜⎝(1− α)

⎡
⎢⎣ρ̄1ṽ1 ⊗ ṽ1 + p̄− Δp̄

(01)
(U)︸ ︷︷ ︸

Bulk pressure difference

⎤
⎥⎦
⎞
⎟⎠ =

−

⎡
⎢⎣p̄−

Interfacial dynamic pressure︷ ︸︸ ︷
ξ (U) ρ̄cΔU

2

⎤
⎥⎦∇α +

Added mass︷ ︸︸ ︷
μ (U) ρ̄c

d
d
Δ
U

dt
+Smom,1 (U)

(2.47)
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Energy:

∂(αρ̄0 ẽ0)
∂t

+∇ · (αṽ0 [ρ̄0 ẽ0 + p̄]) = ṽ0

⎡
⎣p̄− ξ (U) ρ̄cΔU

2︸ ︷︷ ︸
Interfacial dynamic pressure

⎤
⎦∇α+

−ṽ0μ (U) ρ̄c

d
d
Δ
U

dt︸ ︷︷ ︸
Added mass

+ Sene,0 (U)

∂((1−α)ρ̄1 ẽ1)
∂t

+∇ ·

⎛
⎜⎝(1− α) ṽ1

⎡
⎢⎣ρ̄1 ẽ1 + p̄− Δp̄

(01)
(U)︸ ︷︷ ︸

Bulk pressure difference

⎤
⎥⎦
⎞
⎟⎠ =

−ṽ1

⎡
⎣p̄− ξ (U) ρ̄cΔU

2︸ ︷︷ ︸
Interfacial dynamic pressure

⎤
⎦∇α + ṽ1μ (U) ρ̄c

d
d
Δ
U

dt︸ ︷︷ ︸
Added mass

+ Sene,1 (U)

(2.48)

Notably, compatibility equation is already incorporated into eqs.(2.46)-(2.48).

By vector U we denote field conservation variables3:

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

αρ̄0

(1− α) ρ̄1

αρ̄0ṽ0

(1− α) ρ̄1ṽ1

αρ̄0 ẽ0

(1− α) ρ̄1 ẽ1

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.49)

By vector V we will denote primitive variables, typically – those we solve for

in the solution algorithm. These are algorithm-dependent. For example, in fully-

3Even though field mass, momentum and energy are not conserved due to interfacial

interaction terms, it is customary call them “conservation” variables.
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implicit algorithm, the following solution vector is chosen:

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p̄
α

v
mix

≡ αρ̄0 ṽ0+(1−α)ρ̄1 ṽ1

αρ̄0+(1−α)ρ̄1

ṽ0

ũ0

ũ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(2.50)

where k = 0 refers to liquid phase. RELAP5-3D [cdt09] solves for

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

p̄
α
ṽ0

ṽ1

ũ0

ũ1

⎤
⎥⎥⎥⎥⎥⎥⎦ (2.51)

All source terms and interfacial exchange/closure terms (except those due to

interfacial pressure) are presumed to be in algebraic forms, and hidden in the r.h.s.

S
mass,k

(U), 
S
mom,k

(U) and S
ene,k

(U).

2.6.1 Bulk pressure difference and interfacial forces
In eqs.(2.46)-(2.48), we account for difference in bulk phasic pressures, introduc-

ing

p̄0 = p̄
Δp̄01 (U (x)) ≡ p̄0 − p̄1

(2.52)

Very often, Δp̄01 is dropped when it is independent of space, Δp̄01 = const.

We also included interfacial forces due to interfacial dynamic pressure

δp
I
= ξ (U) ρ̄cΔU

2

(2.53)

and virtual mass:


Fvm = μ (U) ρ̄c

d
d
Δ
U

dt
(2.54)
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where ξ (U), Δ
U = ṽ0 − ṽ1 and μ (U) are dynamic pressure coefficient, rel-

ative velocity and added mass coefficient, respectively. By subscripts d and c we

denote dispersed and continuum phase, correspondingly. Time derivative is made

following the dispersed phase,

d
d

dt
≡ ∂

∂t
+ ṽ

d
· ∇ (2.55)

Many of known numerical implementations ignore bulk pressure difference,

interfacial dynamic pressure and added mass forces,

Δp̄01 = 0
ξ (U) = 0
μ (U) = 0

leading to the so-called single-pressure 6-equation two-fluid model4. As shown

by Stuhmiller in [Stu77], this assumption not only unphysical, but also result in

loss of hyperbolicity.

To close the model, one needs to provide equations of state for each phase:

ρ̄
k
= EOS (p̄

k
, ũ

k
) , k = 0, 1

It is convenient to write governing eqs.(2.46)-(2.48) in vector form:

(I+ A)Ut = −
(
[F]

x
+ [G]

y
+ [H]

x
+ FUx +GUy +HUz

)
+ S (2.56)

where F, G and H are conservative flux vectors; F, G and H are non-conservative

flux matrices; I is identity matrix, A is virtual mass matrix; and S is a vector of

source terms.

2.6.2 Variations
It is important to note that in particular code implementations, governing equa-

tions (2.46)-(2.48) are often modified, adjusting to a particular solution algorithm.

4Among major reactor thermalhydraulics codes, these terms are ignored in TRAC-BF1

[B+92] and TRACE [cdt]. RELAP5-3D [cdt09] includes virtual mass term. CATHARE

[Bes90] includes both virtual mass and interfacial dynamic pressure terms.
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JFNK-based. For example, in fully-implicit algorithm of Chapter 6.4, the fol-

lowing equations are actually discretized to form residuals of JFNK:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mixture mass: → ∑
k=0,1

Eq.(2.46)

Gas mass: → Eq.(2.46) for k = 1

Mixture momentum: → ∑
k=0,1

Eq.(2.47)

Liquid momentum: → Eq.(2.47) for k = 0

Gas total energy: → Eq.(2.48) for k = 0

Liquid total energy: → Eq.(2.48) for k = 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

αρ̄0 + (1− α) ρ̄1

αρ̄0

αρ̄0ṽ0 + (1− α) ρ̄1ṽ1

(1− α) ρ̄1ṽ1

αρ̄0 ẽ0

(1− α) ρ̄1 ẽ1

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.57)

From the point of view of numerical discretization, eqs.(2.57) and (2.46)-(2.48)

are identical. The form eqs.(2.57) is however more convenient for treatment of

phase appearance and disappearance.

RELAP5-3D. RELAP5-3D also solves for different set of equations. Instead of

phasic mass and momentum equations, “sum” and “difference” mass and mo-

mentum equations (summing and substracting eqs.(2.46) and eqs.(2.48), respec-

tively) are formulated. Instead of phasic total energy equations, phasic specific

internal energy equations are formed. Moreover, these equtions are written in a

non-conservative form (called “expanded form” in [cdt09]),

AVt = − (FVx +GVy +HVz

)
+ S (2.58)

where V is defined by eq.(2.51), and A, F, G, H and S are different from those in

eq.(2.56). These modifications are necessary for RELAP5-3D implementation of

semi-implicit and nearly-implicit algorithms. “Sum” and “difference” mass and

momentum equations are introduced for convenience to treat phase appearance

and disappearance.

Apparent deficiency of non-conservative (“expanded”) form is that there is no

way to get conservation of mass, momentum and energy at discrete level. This is
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why the last step in RELAP5-3D algorithm is to use “unexpanded” (conservative)

form of phasic mass and energy equations. There is no attempt to get momentum

equation update conservatively.
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Chapter 3

Fully-compressible, Explicit
Algorithms

EXPLICIT algorithms for solving effective-field equations are suitable for high-

speed transients, when dynamic time scales are comparable with the fastest

time of the model. The fastest time scales are usually acoustic or interfacial ex-

change (when rapid phase transitions occur). In these cases, time steps taken due

to accuracy requirements are small and typically comparable with stability limits

of explicit algorithms.

In the following discussion, we avoid any specific reference to the details of

space discretization.

3.1 Explicit Runge-Kutta scheme

For general time integration of the system eqs.(2.46)-(2.48), a number of Strong-
Stability-Preserving (SSP) explicit time discretization methods are available [Got05].

The Total Variation Diminishing (TVD) Runge-Kutta methods of Shu and Osher

[SO89] (a subclass of SSP) are particularly suited for this purpose. In addition to

the simplicity of the Runge-Kutta methods, they are specially designed for time

integration of hyperbolic conservation laws in a way that does not create spurious

oscillation in the solution. The explicit Runge-Kutta schemes are defined as fol-

lows.

20
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First-order Forward Euler:

U
(n+1)

= U
(n)

+Δt ·S
(
U

(n)
)

(3.1)

Second-order Heun:⎧⎨
⎩ U

(1)
= U

(n)
+Δt ·S

(
U

(n)
)

t
(1)

= t
(n+1)

U
(n+1)

= 1
2
U

(n)
+ 1

2

(
U

(1)
+Δt ·S

(
U

(1)
)) (3.2)

Third-order RK-TVD:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U
(1)

= U
(n)

+Δt ·S
(
U

(n)
)

t
(1)

= t
(n+1)

U
(2)

= 3
4
U

(n)
+ 1

4

(
U

(1)
+Δt ·S

(
U

(1)
))

t
(2)

= t
(n+1

2 )

U
(n+1)

= 1
3
U

(n)
+ 2

3

(
U

(2)
+Δt ·S

(
U

(2)
)) (3.3)

where Δt is a time step, while U is a vector of conservative variables, defined by

eq.(2.49). The spatial/source discretization operator S
(rk)

is given by

S
(rk)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−∇ρk
· (α

k
ρ̄

k
ṽ

k
)
(rk)

+ S (rk)

mass,k

−∇vk
· (α

k
ρ̄

k
ṽ

k
⊗ ṽ

k
)
(rk)

+ α
(rk)

k
∇vk

p̄
(rk)

+ S(rk)

mom,k

−∇ek
· (α

k
ṽ

k
(ρ̄

k
ẽ
k
+ p̄))

(rk)

+ (ṽ
k
p̄)

(rk) ∇e
k
α

(rk)

k
+ S (rk)

ene,k

⎤
⎥⎥⎥⎥⎥⎥⎦ (3.4)

3.2 Primitive variables

At the end of each Runge-Kutta step, primitive variables are computed from

known conservative variables (α
k
ρ̄

k
)
(rk)

, (α
k
ρ̄

k
ṽ

k
)
(rk)

and (α
k
ρ̄

k
ẽ
k
)
(rk)

as follows.

1. Phase velocities:

ṽ
(rk)

k
=

(α
k
ρ̄

k
ṽ

k
)
(rk)

(α
k
ρ̄

k
)
(rk)

(3.5)
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2. Phase specific internal energies:

ũ
(rk)

k
=

(α
k
ρ̄

k
ẽ
k
)
(rk)

(α
k
ρ̄

k
)
(rk)

−
(
ṽ

(rk)

k

)2
2

(3.6)

3. Pressure. Using phasic equations of state ρ
k

(
p̄, ũ

(rk)

k

)
, void fractions are

defined as a function of pressure as

α
k
(p̄) =

(α
k
ρ̄

k
)
(rk)

ρ
k

(
p̄, ũ(rk)

k

) (3.7)

Using “compatibility” equation,

[∑
k

α
k
= 1

]
, the following non-linear equa-

tion for pressure is defined:

F (p̄) = 1−
∑
k

(α
k
ρ̄

k
)
(rk)

ρ
k

(
p̄, ũ(rk)

k

) = 0 (3.8)

Eq.(3.8) can be solved for pressure p̄ using Newton’s method1.

4. Phasic void fractions are finally computed using p̄ and eq.(3.7).

3.3 Remarks
1. In most nuclear reactor applications, time step and stability limitations of

explicit schemes are too restrictive. All current and next generation reac-

tor safety codes use (and will be using) semi-implicit and fully-implicit al-

gorithms, which eliminate the stiffness associated with acoustic pressure

waves and interfacial exchange terms.

2. Phase appearance and disappearance is a challenging numerical issue. We

will discuss this in Chapter 7.

1For some simple fluids, F (p̄) can be solved analytically. For example, when the

stiffened gas equation state is used for both phases, F (p̄) is quadratic in p̄. Though, even

in this case the use of iterative Newton method is desirable from round-off errors point of

view [CL07].
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Chapter 4

Operator-Splitting Algorithms

ALL current work-horse reactor thermalhydraulics codes (RELAP5 [cdt09],

TRAC [B+92], TRACE [cdt], CATHARE [Bes90, BPB93] and RETRAN

[McF81]) originate from Liles and Reed [LW78] extension of Harlow and Ams-

den [HA68, HA71, HA75b, HA75a] all-speed “Implicit Continuous-fluid Eule-
rian (ICE)” algorithm. Liles and Reed work was focusing on solving drift-flux

(5-equation) two-fluid model, demonstrating how more tight coupling with en-

ergy equation can be achieved within the general framework of the original ICE

algorithm. These ideas are straightforwardly extendable to the 6-equation model

outlined in Section 2.6. The whole family of these algorithms are often refered to

as “semi-implicit”, Section 4.1.

A couple of extensions of the “semi-implicit” algorithm were introduced in

the begining of 1980s, based on the fractional step method, to enhance stability

of the method and to eliminate material CFL restrictions. These are the SETS al-

gorithm (implemented in TRAC and TRACE, [B+92, cdt]), and Nearly-Implicit
algorithm (implemented in RELAP5-3D, [cdt09]). We will discuss these exten-

sions in Section 4.2.

Even though ICE-based algorithms are called “all-speed”, they are not the

methods of choice for high-speed (supersonic) applications, were density-based

methods are both more accurate and cost-effective. This is why we refer to ICE-

based algorithms as “weakly-compressible”, even though the compressibility ef-

fects are fully accounted for in numerical discretizations.

All reactor thermalhydraulics codes utilize first-order finite-difference donor-

24
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cell/upwinding based schemes, implemented on structured staggered meshes. In

the following discussion though, we avoid any specific reference to the details

of space discretization, allowing for straightforward extension of basic ideas to

more modern and more general high-order space discretization schemes with (ap-

proximate) Riemann solvers [Tor99, Sta06], such as high-order finite-volume or

Discontinuous Galerkin on unstructured collocated meshes.

Without loss of generality, we make discussion of algorithms assuming that

that the vector of unknowns solved for is

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

p̄
α
ṽ0

ṽ1

ũ0

ũ1

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.1)

while the governing equations are written in the form of phasic mass, momentum

and energy conservation, eqs.(2.46)-(2.48) (with neglected virtual mass, interfa-

cial dynamic pressure and bulk pressure differences, for simplicity). Thus, the

vector of conserved variables is:

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

αρ̄0

(1− α) ρ̄1

αρ̄0ṽ0

(1− α) ρ̄1ṽ1

αρ̄0 ẽ0

(1− α) ρ̄1 ẽ1

⎤
⎥⎥⎥⎥⎥⎥⎦ (4.2)

4.1 Semi-Implicit Algorithms
The chief consideration in constructing semi-implicit scheme is to eliminate stabil-

ity limits due to acoustic pressure wave propagation and due to interfacial mass,
momentum and energy exchange terms. This is achieved by treating implicitely
(a) convective velocities in mass and energy conservation equations, (b) pressure

gradient in momentum conservation equations, and (c) all interfacial exchange

terms on the r.h.s. of eqs.(2.46)-(2.48). All the rest terms are treated effectively

explicitely, which imposes the following material CFL stability limit:

Δt <
Δx

|ṽ
k
| (4.3)
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There are two slightly different versions of the algorithm – the one implemented

in RELAP5-3D [cdt09], and the other one in TRAC and TRACE [B+92, cdt]. In

the following discussion, we will highlight the differences.

The algorithm is constructed in a two-stage “predictor-corrector” fashion.

4.1.1 Predictor discretization

The basic “predictor” discretization of six governing conservation equations1,2 is

as follows.

Mass, k=0,1:

αn
k

(
ρ̄n̂+1

k
− ρ̄n

k

)
+ ρ̄n

k

(
αn̂+1

k
− αn

k

)
︸ ︷︷ ︸

RELAP5-3D

TRAC/TRACE:

[
(α

k
ρ̄

k
)n̂+1 − (α

k
ρ̄

k
)n
]

=

= Δt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−∇ρk

· ((α
k
ρ̄

k
)nṽn+1

k

)
+ 
Sn

mass,k
·

⎡
⎢⎢⎢⎢⎢⎣

1

αn̂+1
0

ρ̄n̂+1
m=0,1

ṽn+1
m=0,1

ũn̂+1
m=0,1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Linearization (if non-linear)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.4)

1As mentioned above, we ignore spatial discretization operator details, focussing on

time treatment.
2TRAC, TRACE, RELAP5 and CATHARE use specific internal energy equation in-

stead of total energy. We prefer total energy equation, as this is what is conserved. Thus,

there are some (hopefully minor) numerical implementation differences between our dis-

cussion and legacy T/H codes.
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Total energy, k=0,1:

(α
k
ρ̄

k
)n
[
ũn+1

k
− ũn

k
+

ṽn
k

2
· (ṽn+1

k
− ṽn

k

)]
+ ẽn

k

[
αn

k

(
ρ̄n̂+1

k
− ρ̄n

k

)
+ ρ̄n

k

(
αn̂+1

k
− αn

k

)]
︸ ︷︷ ︸

RELAP5-3D

TRAC/TRACE:

[
(α

k
ρ̄

k
ẽ
k
)n̂+1 − (α

k
ρ̄

k
ẽ
k
)n
]

=

= Δt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−∇ek

·
(
ṽn+1

k
(α

k
ρ̄

k
)n
(
ẽn
k
+

p̄�

ρ̄n
k

))
+ ṽn+1

k
·
(
p̄�∇e

k
αn

k

)
︸ ︷︷ ︸

RELAP5-3D → p̄� = p̄n

TRAC/TRACE → p̄� = p̄n+1

+

+ 
Sn
ene,k

·

⎡
⎢⎢⎢⎢⎢⎣

1

αn̂+1
0

ρ̄n̂+1
m=0,1

ṽn+1
m=0,1

ũn̂+1
m=0,1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Linearization (if non-linear)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.5)

Momentum, k=0,1:

(α
k
ρ̄

k
)nṽn+1

k
− (α

k
ρ̄

k
ṽ

k
)n =

Δt

⎡
⎢⎢⎢⎣−∇vk

· (α
k
ρ̄

k
ṽ

k
⊗ ṽ

k
)n + αn

k
∇vk

(p̄n+1) + S
n
mom,k

[
1

ṽn+1
m=0,1

]
︸ ︷︷ ︸

Linearization (if non-linear)

⎤
⎥⎥⎥⎦

(4.6)

where by (·)n̂+1 we denote new-time “predictor” values. Also,
(∇ρk

·), (∇ek
·) and(∇vk

·) are implementation-specific discrete divergence operators3, while
(∇vk

)
3We are leaving the door open for non-linear flux treatment with approximate Riemann
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and
(∇ek

)
are discrete gradient operators. Interfacial mass and energy exchange

and other mass and energy source terms are linearized (if necessary) relative to

new-time predictor solution vector, with linearization coefficients defined by vec-

tors 
Sn
mass,k

and 
Sn
ene,k

. Source terms of phasic momentum equations are linearized

only4 relative to predictor velocity, ṽn+1
m=0,1

, with linearization coefficients repre-

sented by matrix Sn
mom,k

.

Temporal derivatives on the l.h.s. of eqs.(4.4)-(4.6) are expressed along the

lines of “expanded” equation set of RELAP5-3D [cdt09]. This is necessary to

produce simple linear equations5.

Eqs.(4.4)-(4.6) are constructed in a special way, so that the only spatial deriva-

tives on new-time values (·)n̂+1 and (·)n+1 are for the bulk pressure p̄n+1 and pha-

sic velocity ṽn+1
k

. Moreover, eq.(4.6) contains derivatives for only p̄n+1, which

suggests the construction of pressure-Helmholtz equation as discussed next.

4.1.2 Pressure-Helmholtz equation

Linearization of density. The first step in construction of the pressure equation

is to linearize phasic densities along the lines of ICE algorithm [HA68, HA71]:

ρ̄n̂+1
k

≈ ρ̄�
k
+
(
p̄
n+1 − p̄

�
) ∂ρ̄

k

∂p̄

∣∣∣∣�
ũ
k
=const

+
(
ũ

n+1

k
− ũ

�
k

) ∂ρ̄
k

∂ũ
k

∣∣∣∣�
p̄=const

(4.7)

where partials
∂ρ̄

k

∂p̄

∣∣∣
ũ
k
=const

and
∂ρ̄

k

∂ũ
k

∣∣∣
p̄=const

are available from equations of state

ρ̄
k
= EOS (p̄, ũ

k
) and evaluated at the state (p̄, ũ

k
)�. RELAP5-3D choses (·)� =

(·)n, which together with p̄� = p̄n in eq.(4.5) makes the final coupled mass-energy

(pressure-Helmholtz) system linear. TRAC/TRACE employ iterative algorithm to

account for non-linearities. We will discuss these in details in a moment.

solvers by retaining subscripts ρk , ek and vk
.

4This is to avoid appearance of gradient terms on variables other than velocity, when

momentum equations are plugged into mass and energy equations.
5TRAC/TRACE versions are also shown in boxes below. They do not generate linear

equations, which necessitates iterations on pressure-Helmholtz eq.(4.12), as discussed in

Section 4.1.2
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Next, equations (4.7) are substituted into phasic mass and energy equations

(4.4) and (4.5) to eliminate “predictor” phasic densities ρ̄n̂+1
k

.

Compatibility equation. “Predictor” void fraction αn̂+1
1

can also be eliminated

by substituting the compatibility condition [α1 = 1− α0 ] into eqs.(4.4) and (4.5).

Phasic velocities. The next step is to solve generally coupled (through the source

terms6) phasic momentum equations. The result can be presented as the following

vector:

ṽn+1
0

= an
0
+ bn

0
∇v0

p̄n+1 + cn
0
∇v1

p̄n+1

ṽn+1
1

= an
1
+ bn

1
∇v0

p̄n+1 + cn
1
∇v1

p̄n+1 (4.8)

where an
0,1

, bn
0,1

and cn
0,1

are coefficients – functions of known variables from old

time step level.

The next step would be elimination of “predictor” phasic velocities, by substi-

tuting eq.(4.8) into phasic mass and energy conservation equations (4.4) and (4.5).

After collecting terms, the resulting system of four equations can be presented in

the following matrix form:⎡
⎢⎢⎢⎣

An,�
α0 ,α0

An,�
α0 ,ũ0

An,�
α0 ,ũ1

An,�
α0 ,p̄

An,�
ũ0 ,α0

An,�
ũ0 ,ũ0

An,�
ũ0 ,ũ1

An,�
ũ0 ,p̄

An,�
ũ1 ,α0

An,�
ũ1 ,ũ0

An,�
ũ1 ,ũ1

An,�
ũ1 ,p̄

An,�
p̄,α0

An,�
p̄,ũ0

An,�
p̄,ũ1

An,�
p̄,p̄

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

αn̂+1
0

ũn̂+1
0

ũn̂+1
1

p̄n+1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
X

= b (4.9)

where A is the mass-energy matrix with known coefficients evaluated using states

(·)n and (·)�.

The r.h.s. of eq.(4.9) contains four Laplacians:

b =

⎡
⎢⎢⎢⎣

γn,�
ρ̄0

+Δt∇ρ0
· [(α0 ρ̄0)

n (bn
0
∇v0

p̄n+1 + cn
0
∇v1

p̄n+1
)]

γn,�
ρ̄1

+Δt∇ρ1
· [(α1 ρ̄1)

n (bn
1
∇v0

p̄n+1 + cn
1
∇v1

p̄n+1
)]

γn,�
ẽ0

+Δt∇e0
· [αn

0

(
ρ̄n

0
ẽn
0
+ p̄�

) (
bn
0
∇v0

p̄n+1 + cn
0
∇v1

p̄n+1
)]

γn,�
ẽ1

+Δt∇e1
· [αn

1

(
ρ̄n

1
ẽn
1
+ p̄�

) (
bn
1
∇v0

p̄n+1 + cn
1
∇v1

p̄n+1
)]
⎤
⎥⎥⎥⎦ (4.10)

6Coupling can be easily accounted for by simple algebraic manipulation.
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where γ
n,�
z=ρ̄

k
,ẽ
k

are known coefficients evaluated using states (·)n and (·)�.

Finally, these four Helmholtz equations can be collapsed into one by elimi-

nating αn̂+1
0

, ũn̂+1
0

and ũn̂+1
1

. This can be achieved by inverting matrix A7 (this is

done at each cell of the computational domain) and multiplying A−1 on the left

and right side of eq.(4.9). The resulting variable-coefficient pressure-Helmholtz

equation is the last (fourth) equation in

A
−1b−X = 0 (4.11)

It can be presented in the following form:

∇ρ0
· (a∇v0

p̄n+1 + b∇v1
p̄n+1

)
+∇ρ1

· (c∇v0
p̄n+1 + d∇v1

p̄n+1
)
+

∇e0
· (e∇v0

p̄n+1 + f∇v1
p̄n+1

)
+∇e1

· (g∇v0
p̄n+1 + h∇v1

p̄n+1
)
=

+ip̄n+1 = j

(4.12)

where (a-j) are constants evaluated using states (·)n and (·)�. This parabolic equa-

tion must be solved implicitely by some direct or iterative method for p̄n+1. There

is a number of well-established Helmholtz solvers available, including different

variations of algebraic and full multigrids. In RELAP5-3D, a variation of LU de-

composition solver (so-called Border-Profile Lower-Upper (BPLU) [Mes98]) is

utilized as a default.

RELAP5-3D. As discussed above, by chosing

p̄� = p̄n

in phasic energy equations (4.5), and

(·)� = (·)n

in linearization eq.(4.7), RELAP5-3D removes non-linearity in the coupled phasic

mass and energy equations, and no iterations are necessary.

TRAC/TRACE. These codes follow the original work by Liles and Reed [LW78],

in which iterative Newton Block Gauss Seidel (NBGS) was introduced8. Effec-

tively, RELAP5-3D’s version is just one (the first) iteration (with initial guess

7In RELAP5-3D, a simple LU decomposition is utilized [cdt09].
8Liles and Reed [LW78] implemented this algorithm for drift-flux model.
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taken at the state (·)n) of this non-linear procedure. As discussed by Mahaffy

in [Mah93], tightly converged non-linear iterations of TRAC/TRACE allow to

eliminate systematic mass errors that occur in the RELAP5-3D’s version of the

algorithm.

To complete predictor step, new-time velocities ṽn+1
k

are computed using

equations (4.8) with new pressure values p̄n+1.

Finally, “predictor” values of void fraction αn̂+1
0

and phasic specific internal

energies ũn̂+1
k=0,1

are computed by evaluating the first three rows of

A
−1b

using already available p̄n+1 field.

4.1.3 Corrector
1. (RELAP5-3D only)9 New-time phasic densities (α

k
ρ̄

k
)n+1

and energies

(α
k
ρ̄

k
ẽ
k
)n+1

are obtained by solving eqs.(4.4) and (4.5), in which conser-
vative (“unexpanded”) [

(α
k
ρ̄

k
)n+1 − (α

k
ρ̄

k
)n
]

and [
(α

k
ρ̄

k
ẽ
k
)n+1 − (α

k
ρ̄

k
ẽ
k
)n
]

forms of l.h.s. (transient terms) are utilized. “Predictor” values of phasic

densities, specific internal energies and void fraction are used for evaluation

of the source terms. This step is necessary to alleviate mass and energy

conservation errors which occur due to approximation of transient terms in

“expanded” form of mass and energy equations (4.4) and (4.5).

2. Specific internal energies and densities for each phase are evaluated as

ũn+1
k

=
(α

k
ρ̄

k
ẽ
k
)n+1

(α
k
ρ̄

k
)n+1 −

(
ṽn+1

k

)2
2

; and ρ̄n+1
k

= EOS (p̄n+1, ũn+1
k

)
9This step is unnecessary for TRAC/TRACE, in which non-linearly-coupled phasic

mass and energy equations are solved (Section 4.1.2).
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3. Finally, new-time void fraction is evaluated using density and phasic density

for one of the phase (typically, “continuous” phase is chosen10):

αn+1
c

=
(αc ρ̄c)

n+1

ρ̄n+1
c

while void fraction of the “dispersed” phase is computed from the “compat-

ibility” constraint:

αn+1
d

= 1− αn+1
c

4.1.4 Remarks
1. Operator-splitting in semi-implicit algorithm makes it only first-order-accu-

rate in time.

2. The choice of time-level mixing in flux discretization of phasic mass and

energy equations (4.4) and (4.5) is necessary to maintain simple structure

of the method, with only one implicit equation (4.12) being solved.

3. Mixed time-level transient terms (“expanded” forms) of RELAP5-3D are

also were caused by the necessity to maintan simplicity and linearity of the

discrete form.

4. Mixing time levels in discretization of transient and flux terms suggests

potential problems in achieving steady-states (this is well-known problem

of RELAP5-3D).

5. It can be easily seen that even though “unexpanded” discretizations are used

to update phasic mass and energy (step 1 of the corrector), the final solution

is not conservative for dispersed phase, due to enforcing “compatibility”

at the last corrector stage, thereby “chopping-off” some mass and energy.

Even though this might not be seen as a serious “crime”, at long transients,

these non-conservation errors tend to accumulate11. This also suggests po-

tential problems at α
k
→ 0.

10RELAP5-3D uses liquid phase, [cdt09, TR86], because the liquid phase is nearly

incompressible and less void error is expected using the liquid mass balance.
11In fact, RELAP5-3D uses a measure of difference between “predictor” phasic mass

and final new-time phasic mass for control of time step, [cdt09].
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6. The size of time step is also an issue for RELAP5-3D due to linearization

of equation of state eq.(4.7), as this is done relative to known old time-step
phase density. Even though the algorithm is stable for arbitrary acoustic

CFL, operator-splitting errors due to linearization of density might be sig-

nificant for large time steps.

7. The algorithm requires special treatment for phase appearance and disap-

pearance. We discuss these issues in Chapter 7.

8. Extension of the algorithm to multi-(N )-field formulation is rather straight-

forward. The algorithm would still require only one implicit Helmholtz

solver. However, the size of the matrix A in eq.(4.9) will be (2N × 2N),
for N phase specific internal energies, pressure and (N − 1) phase void

fractions. All the rest will stay essentially the same.

9. It is straightforward to incorporate transport of non-condensible gases and

other passive scalars transport equations (like boron or corrosion products).

In fact, both RELAP5-3D and TRACE do solve for noncondensible gases,

in which case the matrix A in eq.(4.9) is of size (5× 5).

10. Even though we neglected added mass, interfacial dynamic pressure and

phasic bulk pressure differences, these can be straightforwardly incorpo-

rated in the numerical algorithm. In fact, RELAP5-3D does include added

mass term12.

11. Even though semi-implicit algorithm is only-first order in time and non-

conservative, it seems to be very attractive for physics-based precondition-
ing of the JFNK-based algorithm discussed in Section 6.4. Reduction of

size for preconditioning linear algebra solved is significant even in 1D (six

times less for two-fluid formulation). It is 10 times less for 3D two-fluid for-

mulation, and 15 times less for 3D three-fluid formulation13. With JFNK, all

above discussed problems with first-order operator-spliting errors and non-

conservation will be avoided. Special care however must be taken to ensure

12TRAC and TRACE ignore all these physical closure terms.
13And this is on the top of avoiding to compute full Jacobians, which are necessary

for any mathematical-based preconditioners, like ILU. Besides, equation (4.12) does not

need to be solved tightly, as it is used only for preconditioning. For example, only one

or two cycles of multi-grid method can be involved if adequate, which is significant CPU

saving.
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consistency of the discretization at the JFNK solution and preconditioning

stages.

12. It is straightforward to turn operator-splitting “semi-implicit” algorithm into

a segregated algorithm, (see Section 5.2), by modifying “mixed-time” flux

terms (replacing “old-time” values by “iteration” values), and building Picard-

based outer iteration loop around it. This could be an alternative to frac-

tional step algorithms discussed in Section 4.2.

13. Wall heat transfer and friction are treated explicitely in all RELAP5-3D,

TRAC and TRACE, which does impose certain additional stability con-

straints on the algorithms. This is also the case for fractional step variations,

discussed next.

4.2 Fractional step based variations
Time steps of “semi-implicit” algorithms in Section 4.1 are limited by material

CFL eq.(4.3). This is rather restrictive for many reactor-related transients, in-

cluding those involving long-transients and natural convection. To improve sta-

bility, Stewart [Ste81] and Mahaffy [Mah82] intoduced modifications based on

fractional step method [Yan71]. Mahaffy’s SETS algorithm is implemented in

TRAC and TRACE, and in a three-dimensional reactor pressure vessel module

of CATHARE [Mah93, Sta01, BPB93], and we will discuss it in Section 4.2.1.

Trapp and Riemke introduced another variation – “Nearly-Implicit” algorithm in

[TR86], and it will be discussed in Section 4.2.2.

The basic idea of both methods is to increase “impliciteness” by effectively

making convective fluxes in all phasic mass, momentum and energy equations

evaluated at “new” time (n + 1) level. Instead of moving to fully-implicit, frac-

tional step methods achieve this by introducing additional “stabilizer” steps.

4.2.1 Stability-Enhancing Two-Step method (SETS)
As discussed by Mahaffy [Mah82, Mah93], there are several ways to implement

fractional step algorithm. The one introduced in [Mah82] is implemented in both

TRAC and TRACE, and can be described as a three-stage algorithm:

I. Stabilizer for phasic momentum equations,
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II. Modified “semi-implicit” step, and

III. Stabilizer for phasic mass and energy equations.

Step I: Stabilizer for phasic momentum equations

The main purpose of this step is to provide “predictor” value of phasic velocities,

ṽn̂+1
k

, to be used in the “more-implicit” treatment of the momentum equation

convective terms. No attempts are made to force these “predictor” velocity fields

to satisfy mass or energy conservation. The equations solved at this stage are:

Momentum, k=0,1:

(α
k
ρ̄

k
)nṽn̂+1

k
− (α

k
ρ̄

k
ṽ

k
)n =

Δt

⎡
⎢⎢⎢⎢⎣−∇vk

·
(
(α

k
ρ̄

k
ṽ

k
)n ⊗ ṽn̂+1

k

)
+ αn

k
∇vk

(p̄n) + S
n
mom,k

[
1

ṽn̂+1
m=0,1

]
︸ ︷︷ ︸

Linearization (if non-linear)

⎤
⎥⎥⎥⎥⎦

(4.13)

These equations are implicit in ṽn̂+1
k

, and can be easily solved with some appro-

priate direct or iterative method14.

Step II: Modified “semi-implicit”

At this stage, “semi-implicit” algorithm of Section 4.1 (TRAC/TRACE version)

is applied, with the following modified phasic momentum equation:

Momentum, k=0,1:

(α
k
ρ̄

k
)nṽn+1

k
− (α

k
ρ̄

k
ṽ

k
)n =

Δt

⎡
⎢⎢⎢⎣−∇vk

·
⎛
⎝(α

k
ρ̄

k
ṽ

k
)n ⊗ ṽn̂+1

k︸ ︷︷ ︸
Modification

⎞
⎠+ αn

k
∇vk

(p̄n+1) + S
n
mom,k

[
1

ṽn+1
m=0,1

]
︸ ︷︷ ︸

Linearization (if non-linear)

⎤
⎥⎥⎥⎦

(4.14)

14In general, these phasic momentum equations can be locally coupled through the

interfacial exchange terms.
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Modification involves convective term, in which “predictor” value of phasic ve-

locity ṽn̂+1
k

is used instead of ṽn
k
. Since ṽn̂+1

k
is already known from the Step I,

no other modifications are required for the “semi-implicit” algorithm.

As a result of this step, new-time values of phasic velocities ṽn+1
k

and pressure

p̄n+1 are obtained, as well as “predictor” values for phasic density, void fractions

and energy, ρ̄n̂+1
k

, αn̂+1
k

and ẽn̂+1
k

.

Step III: Stabilizer for phasic mass and energy equations

The purpose of this step is to update phasic density and energy equations, using

the following implicit equations:

Mass, k=0,1:

(α
k
ρ̄

k
)n+1 − (α

k
ρ̄

k
)n =

= Δt

⎛
⎜⎜⎜⎜⎜⎜⎜⎝
−∇ρk

· ((α
k
ρ̄

k
)n+1ṽn+1

k

)
+ 
Sn

mass,k
·

⎡
⎢⎢⎣

1

(α
k
ρ̄

k
)n+1

ṽn+1
k

ũn̂+1
k

⎤
⎥⎥⎦

︸ ︷︷ ︸
Linearization (if non-linear)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.15)

and

Total energy, k=0,1:

(α
k
ρ̄

k
ẽ
k
)n+1 − (α

k
ρ̄

k
ẽ
k
)n =

Δt
(
−∇ek

·
(
ṽn+1

k

(
(α

k
ρ̄

k
ẽ
k
)n+1 + αn̂+1

k
p̄n+1

))
+

+ṽn+1
k

p̄n+1∇e
k
αn̂+1

k
+ 
Sn

ene,k
·

⎡
⎢⎢⎣

1

(α
k
ρ̄

k
)n+1

ṽn+1
k

(α
k
ρ̄

k
ẽ
k
)n+1

⎤
⎥⎥⎦

︸ ︷︷ ︸
Linearization (if non-linear)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(4.16)

It can be seen that advection terms for both mass and energy equations are evalu-

ated at the new time level (n + 1), which together with effectively implicit treat-
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ment of advection for momentum equations should eliminate material CFL stabil-

ity limits. Eqs.(4.15) and (4.16) must be solved with some appropriate direct or

iterative implicit solver.

Next, specific internal energies and densities for each phase are evaluated as

ũn+1
k

=
(α

k
ρ̄

k
ẽ
k
)n+1

(α
k
ρ̄

k
)n+1 −

(
ṽn+1

k

)2
2

; and ρ̄n+1
k

= EOS (p̄n+1, ũn+1
k

)
Finally, new-time void fraction is evaluated using density and phasic density

for the “continuous” phase:

αn+1
c

=
(αc ρ̄c)

n+1

ρ̄n+1
c

while the void fraction of the “dispersed” phase is computed from the “compati-

bility” constraint:

αn+1
d

= 1− αn+1
c

4.2.2 Nearly-implicit algorithm

Nearly-Implicit algorithm was introduced by Trapp and Riemke in [TR86], and

it is RELAP5’s counterpart of the TRAC/TRACE’s SETS algorithm. In fact, this

particular fractional step variation was mentioned in the original Mahafee’s paper

[Mah82] as a variation of the SETS algorithm.

Nearly-Implicit algorithm collapses the first two steps of the SETS into a sin-

gle one. This is achieved as follows.

Step I: Implicit velocity equations (= Step I and II of SETS)

Momentum advection of phasic momentum equations is treated implicitely, by

using the following linearization of [ṽ
k
⊗ ṽ

k
]:

[ṽ
k
⊗ ṽ

k
] → ṽn

k
⊗ ṽn+1

k
(4.17)
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Thus, eq.(4.6) becomes:

Momentum, k=0,1:

(α
k
ρ̄

k
)nṽn+1

k
− (α

k
ρ̄

k
ṽ

k
)n =

Δt

⎡
⎢⎢⎢⎣−∇vk

·
⎛
⎝(α

k
ρ̄

k
ṽ

k
)n ⊗ ṽn+1

k︸ ︷︷ ︸
Modification

⎞
⎠+ αn

k
∇vk

(p̄n+1) + S
n
mom,k

[
1

ṽn+1
m=0,1

]
︸ ︷︷ ︸

Linearization (if non-linear)

⎤
⎥⎥⎥⎦

(4.18)

With this, nice algebraic momentum equation form of the “semi-implicit” and

SETS algorithms

ṽn+1
k

= F (∇vk
p̄n+1

)
is lost. Instead,

ṽn+1
k

= F (∇vk
p̄n+1,∇vk

· (ṽn
k
⊗ ṽn+1

k

))
which prevents forming pressure-Helmholtz equation along the lines of eq.(4.12).

Therefore, another route with forming coupled velocity-Helmholtz equations is

followed.

Similar to “semi-implicit” algorithms, linearization eq.(4.7) (RELAP5’s ver-

sion) is utilized to eliminate “predictor” phasic densities ρ̄n̂+1
k

, together with the

“compatibility equation” [α1 = 1− α0 ]. Collecting terms, the following mass-

energy system can be formed:

⎡
⎢⎢⎢⎣

An
α0 ,α0

An
α0 ,ũ0

An
α0 ,ũ1

An
α0 ,p̄

An
ũ0 ,α0

An
ũ0 ,ũ0

An
ũ0 ,ũ1

An
ũ0 ,p̄

An
ũ1 ,α0

An
ũ1 ,ũ0

An
ũ1 ,ũ1

An
ũ1 ,p̄

An
p̄,α0

An
p̄,ũ0

An
p̄,ũ1

An
p̄,p̄

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎣

αn̂+1
0

ũn̂+1
0

ũn̂+1
1

p̄n+1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
X

= b (4.19)

where A is mass-energy matrix with known coefficients evaluated using the state

(·)n (these are obviously different from those of eq.(4.9)).
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The r.h.s. of eq.(4.19) contains velocity divergences:

b =

⎡
⎢⎢⎢⎣

γn
ρ̄0

+ ξn
ρ̄0

· ṽn+1
0

+ ζn
ρ̄0

· ṽn+1
1

+ ηn
ρ̄0
∇ρ0

· ṽn+1
0

γn
ρ̄1

+ ξn
ρ̄1

· ṽn+1
0

+ ζn
ρ̄1

· ṽn+1
1

+ ηn
ρ̄1
∇ρ1

· ṽn+1
1

γn
ẽ0
+ ξn

ẽ0
· ṽn+1

0
+ ζn

ẽ0
· ṽn+1

1
+ ηn

ẽ0
∇e0

· ṽn+1
0

γn
ẽ1
+ ξn

ẽ1
· ṽn+1

0
+ ζn

ẽ1
· ṽn+1

1
+ ηn

ẽ1
∇e1

· ṽn+1
1

⎤
⎥⎥⎥⎦ (4.20)

where γ
n

z=ρ̄
k
,ẽ
k

, ξ
n

z=ρ̄
k
,ẽ
k

and ζ
n

z=ρ̄
k
,ẽ
k

are known coefficients evaluated using the

state (·)n (γ
n

z=ρ̄
k
,ẽ
k

are obviously different from those in eq.(4.10)).

Next, similar to the “semi-implicit” algorithm, αn̂+1
0

, ũn̂+1
0

and ũn̂+1
1

can be

eliminated by inverting matrix A (this is done at each cell of the computational

domain) and multiplying A−1 on the left and right side of eq.(4.19). The resulting

pressure is the last (fourth) equation in

A
−1b−X = 0 (4.21)

It can be presented in the following form15:

p̄n+1 = a+ b · ṽn+1
0

+ c · ṽn+1
1

+
+ e∇ρ0

· ṽn+1
0

+ f∇ρ1
· ṽn+1

1
+ g∇e0

· ṽn+1
0

+ h∇e1
· ṽn+1

1

(4.22)

where (a-h) are constants evaluated using the state (·)n.

The last step is to take gradient of eq.(4.22) and to plug it into the phasic

momentum equation (4.18), thereby eliminating pressure. The resulting velocity-

Helmholtz16 system can be solved (with direct or iterative solver) for ṽn+1
k

. These

new velocities can be plugged into eq.(4.22) to compute new pressure, p̄n+1. Fi-

nally, αn̂+1
0

, ũn̂+1
0

and ũn̂+1
1

are computed from the first three equations of (4.21).

This concludes the first step of the “Nearly-Implicit” algorithm.

Step II: Stabilizer for phasic mass and energy equations

This step is exactly the same as for the TRAC/TRACE’s SETS algorithm.

15As in the case of eq.(4.12), we keep divergence operators different, leaving opportu-

nity to incorporate approximate Riemann solvers.
16These equations include parabolic terms.
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4.2.3 Remarks
1. Both SETS and “Nearly-Implicit” algorithms are only first-order accurate in

time. The only possible way to increase the order of time discretization is by

implementing outer iteration loop in a “segregated” algorithm manner, Sec-

tion 5.2, with a) proper time-centering terms, b) bringing time-differences

to the consistent level, and c) removing operator-split “mixed-time” treat-

ments, which are all over the place in the original algorithms. But this of

course will defeat the whole purpose of using fractional steps, which aim

on achieveing stability for lesser cost than in the case of fully-implicit treat-

ment.

2. Both SETS and “Nearly-Implicit” algorithms suffer from the same mass

and energy conservation errors for the “dispersed” phase, as in the case of

the “semi-implicit” algorithm.

3. Even though material CFL stability limit was eliminated, both SETS and

“Nearly-Implicit” algorithms do not treat wall heat transfer and friction im-

plicitely. This is why the methods are referred to as “Stability-enhancing”

and “Nearly-Implicit”.

4. It is difficult to say which fractional-step algorithm is more efficient. On

one hand, “Nearly-Implicit” algorithm involves 5N implicit solves (in 3D

N -field formulation), while SETS would require 5N + N
SI−iters

implicit

solves (where N
SI−iters

is the number of non-linear iterations on the pressure-

Helmholtz equation of the “semi-implicit” step). On the other hand, im-

plicit velocity equations of SETS are much simpler than velocity-Helmholtz

equations of “Nearly-Implicit”.
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4.3 Incremental form of Semi-Implicit-based algo-
rithms

In the present section, we re-formulate “semi-implicit” algorithm in the incremen-
tal form, to make it easier to compare with SIMPLE-based algorithms described

in Section 5.1, and prepare a convenient form for using it either within Picard

iterations of the segregated algorithm (Section 5.2), or as “physics-based” precon-

ditioning of Section 6.5.2.

We start with writing phasic mass, energy and momentum conservation equa-

tions in the following non-linear form:

Mass, [k=0,N−1]:

[
α��

k
ρ̄��

k
− (α

k
ρ̄

k
)n
]
= Δt

(
−∇ρk

· (α��
k
ρ̄��

k
ṽ��

k

)
+ S��

mass,k

) (4.23)

Total energy, [k=0,N−1]:[
α��

k
ρ̄��

k
ẽ��
k
− (α

k
ρ̄

k
ẽ
k
)n
]
=

= Δt
(−∇ek

· (ṽ��
k
α��

k

(
ρ̄��

k
ẽ��
k
+ p̄�� +Δp̄��

k

))
+

+ ṽ��
k
·
((

p̄�� − δp̄��
I

)∇e
k
α��

k

)
+ S��

ene,k

)
(4.24)

Momentum, [k=0,N−1]:

α��
k
ρ̄��

k
ṽ��

k
− (α

k
ρ̄

k
ṽ

k
)n = Δt

[−∇vk
· (α��

k
ρ̄��

k
ṽ��

k
⊗ ṽ��

k

)
+

+α��
k
∇vk

(
p̄�� +Δp̄��

k

)− (Δp̄��
k
+ δp̄��

I

)∇vk
α��

k
+ S��

mom,k

] (4.25)

where by (·)�� we denote new-update values, which will be represented in the

following incremental form:

p̄�� = p̄� + p̄′

ρ̄��
k

= ρ̄�
k
+ ρ̄′

k

ũ��
k

= ũ�
k
+ ũ′

k

α��
k

= α�
k
+ α′

k

ṽ��
k

= ṽ�
k
+ ṽ′

k

(4.26)
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with (·)� denoting current (Picard- or Newton-) iteration value of the variable17.

4.3.1 Linearization of sources
As our next step, we define the following generic linearization form of source

terms:

S��
mass,k

=
1

Δt

⎛
⎜⎜⎝ γ�

ρk
+

N−1∑
m=0

μ�
ρ(m,k)

α′
m
+

N−1∑
m=0

ζ�
ρ(m,k)

· ṽ′
m
+

+
N−1∑
m=0

η�
ρ(m,k)

ũ′
m
+ ν�

ρk
p̄′

⎞
⎟⎟⎠ (4.27)

S��
ene,k

=
1

Δt

⎛
⎜⎜⎝ γ�

ek
+

N−1∑
m=0

μ�
e(m,k)

α′
m
+

N−1∑
m=0

ζ�
e(m,k)

· ṽ′
m
+

+
N−1∑
m=0

η�
e(m,k)

ũ′
m
+ ν�

ek
p̄′

⎞
⎟⎟⎠ (4.28)

S��
mom,k

=
1

Δt

⎛
⎜⎜⎝ γ�

vk
+

N−1∑
m=0

μ�
v(m,k)

α′
m
+

N−1∑
m=0

ζ�
v(m,k)

ṽ′
m
+

+
N−1∑
m=0

η�
v(m,k)

ũ′
m
+ ν�

vk
p̄′

⎞
⎟⎟⎠ (4.29)

Similarly, lets define the following generic linearization of the phasic bulk
pressure differences:

Δp̄��
k

=

⎛
⎜⎜⎝ γ�

Δp̄k
+

N−1∑
m=0

μ�
Δp̄(m,k)

α′
m
+

N−1∑
m=0

ζ�
Δp̄(m,k)

· ṽ′
m
+

+
N−1∑
m=0

η�
Δp̄(m,k)

ũ′
m
+ ν�

Δp̄k
p̄′

⎞
⎟⎟⎠ (4.30)

and dynamic interfacial pressure:

δp̄��
I

=

⎛
⎜⎜⎝ γ�

δp̄I
+

N−1∑
m=0

μ�
δp̄I(m)

α′
m
+

N−1∑
m=0

ζ�
δp̄I(m)

· ṽ′
m
+

+
N−1∑
m=0

η�
δp̄I(m)

ũ′
m
+ ν�

δp̄I
p̄′

⎞
⎟⎟⎠ (4.31)

17When used in an operator-splitting mode, (·)� = (·)n.
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Accounting for energy phase coupling (coefficients η�
(×)

) is particularly im-

portant, as this is the major contributor to the interfacial mass generation source

eq.(2.15), appearing in closures for all conservation equations. In 1D reactor ther-

malhydraulics, this term is typically modelled as

Γ =

h
w,i

(Tw − Tsat (p̄))− a
i

[
hi,v

(
Tsat (p̄)− T̃v (ũk

, p̄)
)

+h
i,l

(
Tsat (p̄)− T̃

l
(ũ

k
, p̄)
) ]

H
vl
(p̄)

(4.32)

This term can be linearized as

Γ�� = Γ� + H�
v
T̃ ′

v
+ H�

l
T̃ ′

l
(4.33)

with

T̃ ′
k
= p̄′

∂T̃

∂p̄

∣∣∣∣∣
�

ũ
k
=const

+ ũ′
k

∂T̃

∂ũ
k

∣∣∣∣∣
�

p̄=const

(4.34)

4.3.2 Linearization of conservation laws
The next step is to plug eqs.(4.26)-(4.31) into eqs.(4.23)-(4.25), dropping all non-

linear terms18:

Mass, [k=0,N−1]:

α��
k
ρ̄��

k︸ ︷︷ ︸
α�

k
ρ̄�
k
+ α′

k
ρ̄�
k

+α�
k
ρ̄′
k
+������α′

k
ρ̄′
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− (α
k
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· (
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k
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k
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k

)︸ ︷︷ ︸
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ṽ�

k
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k
ρ̄�
k
ṽ′

k
+
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k
ρ̄�
k
ṽ�

k
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k
ρ̄′
k
ṽ�

k
+

+��...

+

+ γ�
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μ�
ρ(m,k)
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m
+
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m=0

ζ�
ρ(m,k)

· ṽ′
m
+

N−1∑
m=0

η�
ρ(m,k)

ũ′
m
+ ν�

ρk
p̄′

(4.35)

18Linearization of phasic mass, momentum and energy source terms will be introduced

later.
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Total energy, [k=0,N−1]:
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k︸ ︷︷ ︸
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ṽ�

k

(
α�

k
ρ̄�
k
ẽ�
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(4.36)
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Momentum, [k=0,N−1]:

α��
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k︸ ︷︷ ︸
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⊗ ṽ�

k
+ α�

k
ρ̄�
k
ṽ�
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ũ′
m
+

+ν�
Δp̄k

p̄′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

+ α′
k
∇vk

γ�
Δp̄k

+��...

+

−Δt
(
Δp̄��

k
+ δp̄��

I

)
∇vk

α��
k︸ ︷︷ ︸⎛

⎜⎜⎜⎜⎜⎜⎝

(
γ�
Δp̄k

+ γ�
δp̄I

)
+

N−1∑
m=0

(
μ�

Δp̄(m,k)
+ μ�

δp̄I(m)

)
α′

m
+

+
N−1∑
m=0

(
ζ�

Δp̄(m,k)
+ ζ�

δp̄I(m)

)
· ṽ′
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(4.37)

Note, that in order to be truly consistent with the original semi-implicit algorithm

(Section 4.1), the terms in boxes must be zeroed. Keeping them would make the

algorithm to be of SETS (and SIMPLE) flavour (see sections 4.2.1 and 5.1).

The next step is elimination of density correction from eqs.(4.35), (4.36) and
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(4.37), by plugging ICE linearization of equation of state:

ρ̄′
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= p̄′

∂ρ̄
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∂p̄

∣∣∣∣�
ũ
k
=const︸ ︷︷ ︸

ρ̄�
p̄k

+ũ′
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(4.38)

rendering

Mass, [k=0,1,...,N−1]:
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ũ′
m
+ ν�

ρk
p̄′

(4.39)

Total energy, [k=0,N−1]:
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ũk

))
+

+ṽ′
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+ ṽ�

k
·
(
p̄�∇e

k
α′

k

)
+ ṽ�
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ũ′
m
+ ν�

ek
p̄′

(4.40)
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and

Momentum, [k=0,N−1]:
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ṽ�

k
⊗ ṽ′
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ṽ�

k
⊗ ṽ�

k
+ α�

k

(
p̄′ρ̄�

p̄k
+ ũ′

k
ρ̄�

ũk

)
ṽ�

k
⊗ ṽ�

k
+

+α�
k
ρ̄�

k
ṽ′

k
⊗ ṽ�

k

⎞
⎟⎠+

+α�
k
∇vk

p̄� + α�
k
∇vk

p̄′ + α′
k
∇vk

p̄� +

+α�
k
∇vk

⎛
⎜⎜⎝ γ�

Δp̄k
+

N−1∑
m=0

μ�
Δp̄(m,k)

α′
m
+

N−1∑
m=0

ζ�
Δp̄(m,k)

· ṽ′
m
+

+
N−1∑
m=0

η�
Δp̄(m,k)

ũ′
m
+ ν�

Δp̄k
p̄′

⎞
⎟⎟⎠+

+α′
k
∇vk

γ�
Δp̄k

−
(
γ�
Δp̄k

+ γ�
δp̄I

)
∇vk

α′
k

−

⎛
⎜⎜⎜⎝

(
γ�
Δp̄k

+ γ�
δp̄I

)
+

N−1∑
m=0

(
μ�

Δp̄(m,k)
+ μ�

δp̄I(m)

)
α′

m
+

+
N−1∑
m=0

(
ζ�

Δp̄(m,k)
+ ζ�

δp̄I(m)

)
· ṽ′

m
+

+
N−1∑
m=0

(
η�
Δp̄(m,k)

+ η�
δp̄I(m)

)
ũ′
m

+
(
ν�
Δp̄k

+ ν�
δp̄I

)
p̄′

⎞
⎟⎟⎟⎠∇vk

α�
k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

+γ�
vk

+
N−1∑
m=0

μ�
v(m,k)

α′
m
+

N−1∑
m=0

ζ�
v(m,k)

ṽ′
m
+

N−1∑
m=0

η�
v(m,k)

ũ′
m
+ ν�

vk
p̄′

(4.41)
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4.3.3 Diagonalization of momentum equations
To diagonalize momentum equations, we first re-write eq.(4.41), collecting and

groupling the terms as:

Momentum, [k=0,N−1]:

(
α�

k
ρ̄�
k
− ζ�

v(k,k)

)
ṽ′

k
−

N−1∑
m=0, �=k

ζ�
v(m,k)

ṽ′
m
+Δt

[
N−1∑
m=0

(
ζ�

Δp̄(m,k)
+ ζ�

δp̄I(m)

)
· ṽ′

m

]
∇vk

α�
k
=

= −D′
v
k
+ p′

v
k
+ a′

v
k
+ u′

v
k
− r�

v
k

(4.42)

where

D′
v
k
= Δt

[
∇vk

· (α�
k
ρ̄�
k

[
ṽ�

k
⊗ ṽ′

k
+ ṽ′

k
⊗ ṽ�

k

])− α�
k
∇vk

N−1∑
m=0

(
ζ�

Δp̄(m,k)
· ṽ′

m

)]
(4.43)

p′
v
k
=
(
ν�

vk
− α�

k
ρ̄�

p̄k
ṽ�

k
−Δt

(
ν�
Δp̄k

+ ν�
δp̄I

)
∇vk

α�
k

)
︸ ︷︷ ︸

1/ω�
k

p̄′+

+Δt
[
α�

k
∇vk

((
1 + ν�

Δp̄k

)
p̄′
)
−∇vk

·
(
α�

k
ρ̄�

p̄k
p̄′
(
ṽ�

k
⊗ ṽ�

k

))]
︸ ︷︷ ︸

dp′
k

=

=
p̄′

ω�
k

+ dp′
k

(4.44)

a′
v
k
=
(
μ�

v(k,k)
+Δt

[
∇vk

(
p̄� + γ�

Δp̄k

)
−
(
μ�

Δp̄(k,k)
+ μ�

δp̄I(k)

)
∇vk

α�
k

]
− ρ̄�

k
ṽ�

k

)
︸ ︷︷ ︸

μ̂�
v(k)

α′
k

+
N−1∑

m=0, �=k

(
μ�

v(m,k)
−Δt

(
μ�

Δp̄(m,k)
+ μ�

δp̄I(m)

)
∇vk

α�
k

)
︸ ︷︷ ︸

μ̂�
v(m,k)

α′
m
+

+Δt

[
α�

k
∇vk

(
N−1∑
m=0

μ�
Δp̄(m,k)

α′
m

)
−
(
γ�

Δp̄k
+ γ�

δp̄I

)
∇vk

α′
k
−∇vk

· (α′
k
ρ̄�

k
ṽ�

k
⊗ ṽ�

k

)]
︸ ︷︷ ︸

da′
k

=

= μ̂�
v(k)

α′
k
+

N−1∑
m=0, �=k

μ̂�
v(m,k)

α′
m
+ da′

k

(4.45)
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u′
v
k
=
(
η�

v(k,k)
− α�

k
ρ̄�
ũk
ṽ�

k

)
︸ ︷︷ ︸

η̂�
v(k)

ũ′
k
+

N−1∑
m=0, �=k

[
η�

v(m,k)
−Δt

(
η�
Δp̄(m,k)

+ η�
δp̄I(m)

)
∇vk

α�
k

]
︸ ︷︷ ︸

η̂�
v(m,k)

ũ′
m
+

+Δt
[
α�

k
∇vk

(
η�
Δp̄(m,k)

ũ′
m

)
−∇vk

·
(
ρ̄�
ũk
α�

k
ṽ�

k
⊗ ṽ�

k
ũ′

k

)]
︸ ︷︷ ︸

du′
k

=

= η̂�
v(k)

ũ′
k
+

N−1∑
m=0, �=k

η̂�
v(m,k)

ũ′
m
+ du′

k

(4.46)

and

r�
v
k
= α�

k
ρ̄�
k
ṽ�

k
− (α

k
ρ̄
k
ṽ

k
)n − γ�

vk
+

+Δt
[
∇vk

·
(
α�

k
ρ̄�
k
ṽ�

k
⊗ ṽ�

k

)
− α�

k
∇vk

(
p̄� + γ�

Δp̄k

)
+
(
γ�
Δp̄k

+ γ�
δp̄I

)
∇vk

α�
k

] (4.47)

is a non-linear momentum residual vector, evaluated at state V�.

Eq.(4.42) is a system of (d×N)19 coupled equations for ṽ′
k
, where d is the

number of dimensions.

We can now re-write eq.(4.42) in the following compact form:

F

⎡
⎢⎢⎢⎢⎣

...

...
ṽ′

m

...

...

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

...

...
m′

m

...

...

⎤
⎥⎥⎥⎥⎦

m=0,...,N

(4.48)

19We tacitly presume finite-volume (one degree of freedom per cell-variable) based

discretization. Though the approach shall be straightforwardly expandable to finite-

element/Discontinuous Galerkin forms as well, with several degrees of freedom per cell-

variable.
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where

m′
m
= p̄′

ω�
m
+ μ̂�

v(m)
α′

m
+

N−1∑
j=0, �=m

μ̂�
v(j,m)

α′
j
+ η̂�

v(m)
ũ′

m
+

N−1∑
j=0, �=m

η̂�
v(j,m)

ũ′
j
+

+dp′
m
(∇p̄′) + da′

m

(
∇α′

j

)
+ du′

m

(
∇ũ′

j

)
−

−

⎛
⎜⎝

See diagonalization below︷ ︸︸ ︷
D′

vm

(
∇ · ṽ′

j

)
+r�

vm

⎞
⎟⎠

︸ ︷︷ ︸
(combined) →r�vm

(4.49)

and F is (N ×N) friction coefficient matrix, with each element being (d× d)
blocks. Off-diagonal blocks represent local inter-phase momentum coupling, which

can be eliminated by writing:

ṽ′
k
=

N−1∑
m=0

F−1
(k,m)

⎛
⎜⎜⎜⎜⎜⎜⎝

p̄′
ω�

m
+ μ̂�

v(m)
α′

m
+

N−1∑
j=0, �=m

μ̂�
v(j,m)

α′
j
+

+ η̂�
v(m)

ũ′
m
+

N−1∑
j=0, �=m

η̂�
v(j,m)

ũ′
j
+

+ dp′
m
+ da′

m
+ du′

m
−
(
D′

vm
+ r�

vm

)

⎞
⎟⎟⎟⎟⎟⎟⎠ (4.50)

where F−1
(k,m)

represents
(k,m)

(th) block (each of size (d× d)) of matrix F−1.

Eq.(4.50) is still non-diagonal, due to terms associated with spatial variation

of velocity corrections, D′
v
k

. To eliminate these off-diagonal terms, a number of

options can be implemented.

1. OS. Simply ignore these terms, D′
v
k
= 0. This is what would be the closest

to the original semi-implicit (operator-splitting, OS) algorithm.

2. SIMPLE-like. For this, we replace D′
v
k

by its discrete form20:

D′
v
k
→ A

(k)

vc,c
ṽ′

k
+

��������

ignore

N∑
n

A
(k)

vc,n
ṽ′

k(n)
(4.51)

20To be sufficiently generic, we avoid discussion of specific forms of spatial discretiza-

tion.
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where A
(k)

vi,j
are (d× d) matrices with space discretization coefficients, c

denotes cell id, n – neiboring cells, while N is the number of neighboring

cells involved. By ignoring contributions from neighbor cells21, we remove

all off-diagonal contributions from spatial variations of velocity corrections.

Coefficient A
(k)

vc,c
should be absorbed into the diagonal of the friction coef-

ficient matrix F.

3. Diagonal stabilizer. In this option, one would solve for “predictor” value

of velocity correction ˆ̃v′
k
, using the following “explicit” sweep:

ˆ̃v′
k
= −

N−1∑
m=0

F−1
(k,m)

r�
vm

(4.52)

Now, ˆ̃v′
k

can be used to compute D′
v
k

(
∇ · ˆ̃v′

j

)
, which is absorbed into r�

vm

as:

r�
vm

→ r�
vm

+D′
v
k

(
∇ · ˆ̃v′

m

)
(4.53)

4. Implicit stabilizer. In this option, the following PDE is solved implicitly

for ˆ̃v′
k
:

ˆ̃v′
k
+D′

v
k

(
∇ · ˆ̃v′

k

)
= −

N−1∑
m=0

F−1
(k,m)

r�
vm

(4.54)

This option is close to what is done in the “velocity stabilizer” step of SETS

(Section 4.2.1). If there is a viscosity operator22, this option is a must to

eliminate stability limits associated with (turbulent) viscosity-Fourier num-

ber, in addition to breaking material Courant stability restrictions. Predictor

velocity ˆ̃v′
k

can now be used to compute D′
v
k

(
∇ · ˆ̃v′

k

)
, which is absorbed

into r�
vm

as in eq.(4.53).

We can now plug eq.(4.50) into mass and energy conservation equations (4.39)

and (4.40), to get a system of (2×N) coupled pressure-correction Helmholtz
equations (P

′
HE).

21When the method is used in an iterative algorithm – segregated- or JFNK-based, this

term is zero upon convergence, and ignoring these contributions should not affect the final

result.
22Ignored in the discussion here, for simplicity.
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4.3.4 Mass P′HE

First, re-group eq.(4.39) as

Mass, [k=0,1,...,N−1]:

ρ̄�
k
−μ�

ρ(k,k)

Δt2
α′

k
−

N−1∑
m=0, �=k

μ�
ρ(m,k)

Δt2
α′

m
+

+
α�
k
ρ̄�
ũk

−η�
ρ(k,k)

Δt2
ũ′

k
−

N−1∑
m=0, �=k

η�
ρ(m,k)

Δt2
ũ′

m
+
(

α�
k
ρ̄�
p̄k

−ν�
ρk

Δt2

)
p̄′ =

= − 1
Δt2

[
α�

k
ρ̄�

k
− (α

k
ρ̄

k
)n +Δt∇ρk

· (α�
k
ρ̄�

k
ṽ�

k

)− γ�
ρk

]
−

− 1
Δt
∇ρk

·
(
ρ̄�

k
ṽ�

k
α′

k
+ ρ̄�

ũk
α�

k
ṽ�

k
ũ′

k
+ ρ̄�

p̄k
α�

k
ṽ�

k
p̄′
)
+

+ 1
Δt2

N−1∑
m=0

ζ�
ρ(m,k)

· ṽ′
m
− 1

Δt
∇ρk

· (α�
k
ρ̄�

k
ṽ′

k

)

(4.55)

and plug eq.(4.50) to replace velocity corrections:

Mass, [k=0,1,...,N−1]:

σ
(k)

(ρ,α′)
α′

k
+ σ

(k)

(ρ,u′)
ũ′

k
+ σ

(k)

(ρ,p′)
p̄′︸ ︷︷ ︸

in-phase coupling

+
N−1∑

m=0, �=k

σ
(k,m)

(ρ,α′)
α′

m
+

N−1∑
m=0, �=k

σ
(k,m)

(ρ,u′)
ũ′

m︸ ︷︷ ︸
inter-phase coupling

=

= − r�
α
k

Δt2
+ Lρ

k

(∇p̄′,∇2p̄′
)
+D

(k)

(ρ,α′)
+D

(k)

(ρ,u′)︸ ︷︷ ︸
Pressure waves

(4.56)

where

σ
(k)

(ρ,α′) =
1

Δt2

[
ρ̄�
k
− μ�

ρ(k,k)
−

N−1∑
m=0

ζ�
ρ(m,k)

·
(
F−1

(m,k)
μ̂�

v(k)
+

N−1∑
i=0, �=k

F−1
(m,i)

μ̂�
v(k,i)

)]

σ
(k)

(ρ,u′) =
1

Δt2

[
α�

k
ρ̄�
ũk

− η�
ρ(k,k)

−
N−1∑
m=0

ζ�
ρ(m,k)

·
(
F−1

(m,k)
η̂�

v(k)
+

N−1∑
i=0, �=k

F−1
(m,i)

η̂�
v(k,i)

)]

σ
(k)

(ρ,p′) =
1

Δt2

(
α�

k
ρ̄�
p̄k

− ν�
ρk

−
N−1∑
m=0

ζ�
ρ(m,k)

·
N−1∑
i=0

F−1
(m,i)

1
ω�

i

)
(4.57)



4.3. INCREMENTAL FORM OF SEMI-IMPLICIT-BASED ALGORITHMS 53

are in-phase void/energy/pressure coupling elements of the (2×N) mass-energy
wavenumber matrix, Ŵ;

N−1∑
m=0, �=k

σ
(k,m)

(ρ,α′)α
′
m

= −
N−1∑

m=0, �=k

μ�
ρ(m,k)

Δt2
α′

m
−

−
N−1∑
m=0

(
ζ�
ρ(m,k)

Δt2
·
[

N−1∑
i=0, �=k

F−1
(m,i)

μ̂�
v(i)

α′
i
+

(
N−1∑
i=0

F−1
(m,i)

N−1∑
j=0, �=i, �=k

μ̂�
v(j,i)

α′
j

)]) (4.58)

N−1∑
m=0, �=k

σ
(k,m)

(ρ,u′) ũ
′
m

= −
N−1∑

m=0, �=k

η�ρ(m,k)

Δt2
ũ′

m
−

−
N−1∑
m=0

(
ζ�
ρ(m,k)

Δt2
·
[

N−1∑
i=0, �=k

F−1
(m,i)

η̂�
v(i)

ũ′
i
+

(
N−1∑
i=0

F−1
(m,i)

N−1∑
j=0, �=i, �=k

η̂�
v(j,i)

ũ′
j

)]) (4.59)

are inter-phase void/energy coupling elements of Ŵ,

r�
α
k

= α�
k
ρ̄�

k
− (α

k
ρ̄

k
)n +Δt∇ρk

·
(
α�

k
ρ̄�

k

[
ṽ�

k
−

N−1∑
m=0

F−1
(k,m)

r�
vm

])
−

−γ�
ρk

−
N−1∑
m=0

ζ�
ρ(m,k)

·
N−1∑
i=0

F−1
(m,i)

r�
vi

(4.60)

is non-linear residual of phasic mass, evaluated at state V�,

Lρ
k

(∇p̄′,∇2p̄′
)

= 1
Δt2

N−1∑
m=0

ζ�
ρ(m,k)

·
N−1∑
i=0

F−1
(m,i)

dp′
i
−

− 1
Δt
∇ρk

·
(
α�

k

[
ρ̄�

p̄k
ṽ�

k
+ ρ̄�

k

N−1∑
m=0

F−1
(k,m)

1
ω�

m

]
p̄′ + α�

k
ρ̄�

k

N−1∑
m=0

F−1
(k,m)

dp′
m

) (4.61)

is Laplacian23, and

D
(k)

(ρ,α′) =
N−1∑
m=0

ζ�
ρ(m,k)

Δt2
·
N−1∑
i=0

F−1
(m,i)

da′
i
−

−∇ρk
·
(

ρ̄�
k

Δt

[
ṽ�

k
α′

k
+ α�

k

N−1∑
m=0

F−1
(k,m)

(
μ̂�

v(m)
α′

m
+

N−1∑
j=0, �=m

μ̂�
v(j,m)

α′
j
+ da′

m

)]) (4.62)

23Strictly speaking, this operator is not exactly Laplacian, as it also includes pressure

gradient terms.
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D
(k)

(ρ,u′) =
N−1∑
m=0

ζ�
ρ(m,k)

Δt2
·
N−1∑
i=0

F−1
(m,i)

du′
i
−

−∇ρk
·
(

α�
k

Δt

[
ρ̄�
ũk
ṽ�

k
ũ′

k
+ ρ̄�

k

N−1∑
m=0

F−1
(k,m)

(
η̂�

v(m)
ũ′

m
+

N−1∑
j=0, �=m

η̂�
v(j,m)

ũ′
j
+ du′

m

)]) (4.63)

are terms associated with spatial variations of void fraction and specific inter-

nal energy correction, correspondingly; similar to those of momentum equation

(4.42). The first obvious choice would be simply ignore them (OS mode). We

will discuss other possible treatments of these terms as stabilizers of fractional

steps, in Section 4.3.7.

For the purpose of treating phase appearance and disappearance, it is important

to introduce conservation of mixture mass equation as:

Mixture mass:

N−1∑
n=0

(
σ

(n)

(ρ,α′)
α′

n
+

N−1∑
m=0, �=n

σ
(n,m)

(ρ,α′)
α′

m

)
+

+
N−1∑
n=0

(
σ

(n)

(ρ,u′)
ũ′

n
+

N−1∑
m=0, �=n

σ
(n,m)

(ρ,u′)
ũ′

m

)
+

N−1∑
n=0

σ
(n)

(ρ,p′)
p̄′ =

=
N−1∑
n=0

(
Lρn

(∇p̄′,∇2p̄′) +D
(n)

(ρ,α′)
+D

(n)

(ρ,u′)
− r�

αn

Δt2

)
(4.64)

This equation will be used to replace mass conservation for “minor” phase, as

discussed in Section 4.3.6.
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4.3.5 Energy P′HE
First, re-write eq.(4.40) in the following form:

Total energy, [k=0,N−1]:

ρ̄�
k
ẽ�
k
−μ�

e(k,k)
−Δt

(
ṽ�
k
·∇e

k
α�
k

)
μ�
δp̄I(k)

Δt2
α′

k
−

N−1∑
m=0, �=k

μ�
e(m,k)

+Δt
(
ṽ�
k
·∇e

k
α�
k

)
μ�
δp̄I(m)

Δt2
α′

m
+

+
α�
k

(
ρ̄�
k
+ẽ�

k
ρ̄�
ũk
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and plug eq.(4.50) to replace velocity corrections:
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Total energy, [k=0,N−1]:

σ
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are in-phase void/energy/pressure coupling elements of the (2×N) mass-energy
wavenumber matrix, Ŵ;
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ṽ�
k
·∇e

k
α�
k

)N−1∑
m=0

ζ�
δp̄I(m)

+
N−1∑
m=0

ζ�
e(m,k)

Δt2
·

N−1∑
i=0, �=k

F−1
(m,i)

(
μ̂�

v(i)
α′

i

)
−

−
Δt
(
ṽ�
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ṽ�
k

Δt2
·

N−1∑
m=0, �=k

F−1
(k,m)

(
η̂�

v(m)
ũ′
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are inter-phase void/energy coupling elements of Ŵ,
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is a non-linear energy residual vector, evaluated at state V�,
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ẽ�
k
+ p̄� + γ�

Δp̄k

)N−1∑
m=0

F−1
(k,m)

(
p̄′
ω�

m
+ dp′

m

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.73)



4.3. INCREMENTAL FORM OF SEMI-IMPLICIT-BASED ALGORITHMS 59

is Laplacian, and
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ũ′

m
+

N−1∑
j=0, �=m

η̂�
v(j,m)

ũ′
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are terms associated with spatial variations of void fraction and specific internal

energy correction, correspondingly; similar to those of momentum and mass equa-

tions (4.42) and (4.56). Again, the first obvious choice would be simply ignore

them (OS mode), but we will introduce other possible treatments of these terms in

Section 4.3.7.
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Similar to eq.(4.64), we introduce the following conservation of mixture en-
ergy equation:

Mixture energy:
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ũ′

m

)
+

N−1∑
n=0

σ
(n)

(e,p′)
p̄′ =

=
N−1∑
n=0

(
Len

(∇p̄′,∇2p̄′) +D
(n)

(e,α′)
+D

(n)

(e,u′)
− r�

αn

Δt2

)
(4.76)

4.3.6 Pressure correction P′HE

Eqs.(4.56) and (4.66) compose a system of (2×N) equations for (2×N + 1)
unknowns:

(
p̄′, α′

k
, ũ′

k

)
, k=0,...,N−1. We eliminate one unknown – void fraction

for the selected phase e, by using compatibility equation:

α′
e
= 1− α�

e
−

N−1∑
m=0, �=e

(
α�

m
+ α′

m

)
(4.77)

For the sake of robustness when a phase appears/disappears, we choose to elimi-

nate void fraction for a fluid with the smallest αe . Note, that nothing prohibits to

choose different e for different computational cells, provided that the choise of e

is frozen during non-linear iterations (to avoid “clicking” if Newton procedure is

used). Also, instead of phasic mass and energy equations for phase e, we will use

mixture mass and energy equations (4.64) and (4.76). This should avoid forming

degenerate P
′
HE when αe → 0.

Now, a closed system of (2×N) P
′
HE equations for (2×N) unknowns
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(
p̄′, α′

k
, ũ′

m

)
, [k,m=0,...,N−1, k �=e] can be written as:

P′HE of phasic mass conservation, [k=0,1,...,N−1, k �=e]:(
σ

(k)

(ρ,α′)
− σ

(k,e)

(ρ,α′)

)
α′

k
+ σ

(k)

(ρ,u′)
ũ′

k
+ σ

(k)

(ρ,p′)
p̄′+

+
N−1∑

m=0, �=k, �=e

(
σ

(k,m)

(ρ,α′)
− σ

(k,e)

(ρ,α′)

)
α′

m
+

N−1∑
m=0, �=k

σ
(k,m)

(ρ,u′)
ũ′

m
=

= Lρ
k
(∇p̄′,∇2p̄′) +D

(k)

(ρ,α′)
+D

(k)

(ρ,u′)
− σ

(k,e)

(ρ,α′)

(
1−

N−1∑
m=0

α�
m

)
− r�α

k

Δt2

(4.78)

P′HE of phase-e mass conservation:

σ
(e)

(ρ,u′)
ũ′

e
+ σ

(e)

(ρ,p′)
p̄′ +

N−1∑
m=0, �=e

(
σ

(e,m)

(ρ,α′)
− σ

(e)

(ρ,α′)

)
α′

m
+

N−1∑
m=0, �=e

σ
(e,m)

(ρ,u′)
ũ′

m
=

= Lρe
(∇p̄′,∇2p̄′) +D

(e)

(ρ,α′)
+D

(e)

(ρ,u′)
− σ

(e)

(ρ,α′)

(
1−

N−1∑
m=0

α�
m

)
− r�αe

Δt2

(4.79)

P′HE of phasic total energy conservation, [k=0,1,...,N−1, k �=e]:(
σ

(k)

(e,α′)
− σ

(k,e)

(e,α′)

)
α′

k
+ σ

(k)

(e,u′)
ũ′

k
+ σ

(k)

(e,p′)
p̄′+

+
N−1∑

m=0, �=k, �=e

(
σ

(k,m)

(e,α′)
− σ

(k,e)

(e,α′)

)
α′

m
+

N−1∑
m=0, �=k

σ
(k,m)

(e,u′)
ũ′

m
=

= Le
k
(∇p̄′,∇2p̄′) +D

(k)

(e,α′)
+D

(k)

(e,u′)
− σ

(k,e)

(e,α′)

(
1−

N−1∑
m=0

α�
m

)
− r�e

k

Δt2

(4.80)

P′HE of phase-e total energy conservation:

σ
(e)

(e,u′)
ũ′

e
+ σ

(e)

(e,p′)
p̄′ +

N−1∑
m=0, �=e

(
σ

(e,m)

(e,α′)
− σ

(e)

(e,α′)

)
α′

m
+

N−1∑
m=0, �=e

σ
(e,m)

(e,u′)
ũ′

m
=

= Lee
(∇p̄′,∇2p̄′) +D

(e)

(e,α′)
+D

(e)

(e,u′)
− σ

(e)

(e,α′)

(
1−

N−1∑
m=0

α�
m

)
− r�

ee

Δt2

(4.81)

As an alternative to replace eqs.(4.79) and (4.81), one can solve for the following
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mixture mass and energy equations:

P′HE of mixture mass:

N−1∑
n=0, �=e

[(
σ

(n)

(ρ,α′) + σ
(e,n)

(ρ,α′)

)
α′

n
+

N−1∑
m=0, �=n, �=e

σ
(n,m)

(ρ,α′)α
′
m

]
−

−
(

N−1∑
n=0, �=e

σ
(n,e)

(ρ,α′) + σ
(e)

(ρ,α′)

)
N−1∑

m=0, �=e

α′
m
+

+
N−1∑
n=0

(
σ

(n)

(ρ,u′) ũ
′
n
+

N−1∑
m=0, �=n

σ
(n,m)

(ρ,u′) ũ
′
m

)
+

N−1∑
n=0

σ
(n)

(ρ,p′) p̄
′ =

=
N−1∑
n=0

(
Lρn

(∇p̄′,∇2p̄′
)
+D

(n)

(ρ,α′) +D
(n)

(ρ,u′) −
r�
αn
Δt2

)
−

−
(

N−1∑
n=0, �=e

σ
(n,e)

(ρ,α′) + σ
(e)

(ρ,α′)

)(
1−

N−1∑
m=0

α�
m

)

(4.82)

and

P′HE of mixture energy:

N−1∑
n=0, �=e

[(
σ

(n)

(e,α′) + σ
(e,n)

(e,α′)

)
α′

n
+

N−1∑
m=0, �=n, �=e

σ
(n,m)

(e,α′)α
′
m

]
−

−
(

N−1∑
n=0, �=e

σ
(n,e)

(e,α′) + σ
(e)

(e,α′)

)
N−1∑

m=0, �=e

α′
m
+

+
N−1∑
n=0

(
σ

(n)

(e,u′) ũ
′
n
+

N−1∑
m=0, �=n

σ
(n,m)

(e,u′) ũ
′
m

)
+

N−1∑
n=0

σ
(n)

(e,p′) p̄
′ =

=
N−1∑
n=0

(
Len

(∇p̄′,∇2p̄′
)
+D

(n)

(e,α′) +D
(n)

(e,u′) −
r�
en

Δt2

)
−

−
(

N−1∑
n=0, �=e

σ
(n,e)

(e,α′) + σ
(e)

(e,α′)

)(
1−

N−1∑
m=0

α�
m

)

(4.83)

Now we have two alternative (and mathematically equivalent) systems of (2×N)
locally coupled P

′
HE equations to solve:

I. Phasic system: eqs.(4.78)-(4.81).

I. Mixture system: eqs.(4.78), (4.80), (4.82) and (4.83).
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The mixture system is slightly better for solution algorithms, when αe → 0.

The phasic system is slightly easier to analyze from the point of view wavenum-

bers.

Both mixture and phasic systems can be written in the following matrix form:

W (V�)

⎡
⎢⎢⎢⎢⎢⎢⎣

...
α′

k

...
ũ′

m

...
p̄′

⎤
⎥⎥⎥⎥⎥⎥⎦

= f
(
∇p̄′,∇2p̄′,D

(n)

(ρ,α′)
,D

(n)

(ρ,u′)
,D

(n)

(e,α′)
,D

(n)

(e,u′)

)
k = 0, ..., N − 1; k �= e
(m,n) = 0, ..., N − 1

(4.84)

where W is a wavenumber matrix. This system can be locally de-coupled to

produce the following set of equations for phasic void fractions, internal energies

and pressure:

⎡
⎢⎢⎢⎢⎢⎢⎣

...
α′

k

...
ũ′

m

...
p̄′

⎤
⎥⎥⎥⎥⎥⎥⎦

= W−1f
(
∇p̄′,∇2p̄′,D

(n)

(ρ,α′)
,D

(n)

(ρ,u′)
,D

(n)

(e,α′)
,D

(n)

(e,u′)

)
k = 0, ..., N − 1; k �= e
(m,n) = 0, ..., N − 1

(4.85)

The last equation in this system is the pressure correction P′HE:

κ2p̄′ −
{
κ2
W

−1f
(
∇p̄′,∇2p̄′,D

(n)

(ρ,α′)
,D

(n)

(ρ,u′)
,D

(n)

(e,α′)
,D

(n)

(e,u′)

)}
2N

= 0 (4.86)

where by {w}k we denote the kth component of the vector w, and κ is the

wavenumber, typically consisting of a number of harmonics. It is completely

decoupled from the rest (N − 1) phasic void fraction and N internal energy cor-

rection P
′
HE equations, provided that D

(n)

(ρ,α′)
, D

(n)

(ρ,u′)
, D

(n)

(e,α′)
, and D

(n)

(e,u′)
are avail-

able. The options for these will be explained in Section 4.3.7.

Equation (4.86) embeds all phasic mass, energy conservation, as well as
phase compatibility condition. Once it is solved for a pressure correction p̄′, we
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can compute the r.h.s. vector f (∇p̄′,∇2p̄′) and the rest of unknowns:

α′
k
=
{
W−1f

(
∇p̄′,∇2p̄′,D

(n)

(ρ,α′)
,D

(n)

(ρ,u′)
,D

(n)

(e,α′)
,D

(n)

(e,u′)

)}
0,...,N−2

ũ′
m
=
{
W−1f

(
∇p̄′,∇2p̄′,D

(n)

(ρ,α′)
,D

(n)

(ρ,u′)
,D

(n)

(e,α′)
,D

(n)

(e,u′)

)}
N−1,...,2N−1

k = 0, ..., N − 1; k �= e
(m,n) = 0, ..., N − 1

(4.87)

These also do satisfy mass/energy conservation and compatibility condition. Next,

we compute the void fraction for eliminated phase α′
e

using equation (4.77). Fi-

nally, we compute p′
v
k

, a′
v
k

and u′
v
k

with eqs.(4.44)-(4.46), and then phasic ve-

locities ṽ′
k

by eq.(4.50). This will complete the solution algorithm.

4.3.7 Mass and energy stabilizers

Here, we discuss different options for computation of D
(k)

(ρ,α′)
, D

(k)

(ρ,u′)
, D

(k)

(e,α′)
, and

D
(k)

(e,u′)
.

1. OS. Simply ignore these terms,

D
(k)

(ρ,α′)
= 0

D
(k)

(ρ,u′)
= 0

D
(k)

(e,α′)
= 0

D
(k)

(e,u′)
= 0

This is what would be the closest to the original semi-implicit (operator-

splitting, OS) algorithm.

2. SIMPLE-like. For this, we represent these terms using the following dis-

crete forms:

D
(k)

(ρ,α′)
→ A

(k)

(ρ,α)c,c
α′

k
+

���������� ignoreN∑
n

A
(k)

(ρ,α)c,n
α′

k(n)

D
(k)

(e,α′)
→ A

(k)

(e,α)c,c
α′

k
+

���������� ignoreN∑
n

A
(k)

(e,α)c,n
α′

k(n)

(4.88)
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and

D
(k)

(ρ,u′)
→ A

(k)

(ρ,u)c,c
ũ′

k
+

��������� ignoreN∑
n

A
(k)

(ρ,u)c,n
ũ′

k(n)

D
(k)

(e,u′)
→ A

(k)

(e,u)c,c
ũ′

k
+

��������
 ignore

N∑
n

A
(k)

(e,u)c,n
ũ′

k(n)

(4.89)

where A
(k)

(×)c,c
are space discretization coefficients, c denotes cell id, n – nei-

boring cells, while N is the number of neighboring cells involved. Ignoring

contributions from neighbor cells should not affect the final result, because

this term is zero upon convergence of an iterative algorithm (either segre-

gated or Newton-based). Coefficient A
(k)

(×)c,c
should be absorbed into the

diagonal of the wavenumber matrix W.

3. Diagonal stabilizer. In this option, one would solve for “predictor” values

of void fraction α̂′
k

and internal energy ˆ̃u′
m

corrections, using the following

“explicit” version of eq.(4.85), in which p̄′, D
(k)

(ρ,α′)
, D

(k)

(ρ,u′)
, D

(k)

(e,α′)
, and D

(k)

(e,u′)
are ignored (“operator-splitted”). First, for void fractions:

α̂′
k
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−σ
(i,e)

(ρ,α′)

(
1−

N−1∑
n=0

α�
n

)
− r�αi

Δt2

...

−σ
(j,e)

(e,α′)

(
1−

N−1∑
n=0

α�
n

)
−

r�ej
Δt2

...
N−1∑
n=0

(
− r�

αn
Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(ρ,α′) + σ
(e)

(ρ,α′)

)(
1−

N−1∑
l=0

α�
l

)
N−1∑
n=0

(
− r�en

Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(e,α′) + σ
(e)

(e,α′)

)(
1−

N−1∑
l=0

α�
l

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0,...,N−2

(i, k) = 0, ..., N − 1; i �= e
j = 0, ..., N − 1

(4.90)

and

α̂′
e
= 1− α�

e
−

N−1∑
m=0, �=e

(
α�

m
+ α̂′

m

)
(4.91)
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This allows to compute D
(k)

(ρ,α′)

(
α̂′

k

)
and D

(k)

(e,α′)

(
α̂′

k

)
using eqs.(4.62) and

(4.74). Next, for phasic specific internal energies:

ˆ̃u′
k
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
W−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
(i)

(ρ,α′) − σ
(i,e)

(ρ,α′)

(
1−

N−1∑
n=0

α�
n

)
−

r�
α
i

Δt2

...

D
(j)

(e,α′) − σ
(j,e)

(e,α′)

(
1−

N−1∑
n=0

α�
n

)
−

r�
e
j

Δt2

...
N−1∑
n=0

(
D

(n)

(ρ,α′) −
r�
αn
Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(ρ,α′) + σ
(e)

(ρ,α′)

)(
1−

N−1∑
l=0

α�
l

)
N−1∑
n=0

(
D

(n)

(e,α′) −
r�
en

Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(e,α′) + σ
(e)

(e,α′)

)(
1−

N−1∑
l=0

α�
l

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0,...,N−2

i = 0, ..., N − 1; i �= e
(j, k) = 0, ..., N − 1

(4.92)

This allows to compute D
(k)

(ρ,u′)

(
ˆ̃u′
k

)
and D

(k)

(e,u′)

(
ˆ̃u′
k

)
using eqs.(4.63) and

(4.75), and, finally, to incorporate all D
(k)

(ρ,α′)

(
α̂′

k

)
, D

(k)

(e,α′)

(
α̂′

k

)
, D

(k)

(ρ,u′)

(
ˆ̃u′
k

)
and D

(k)

(e,u′)

(
ˆ̃u′
k

)
into the pressure correction P

′
HE eq.(4.86).

This option would definitely improve upon the first (OS) option, without

significant CPU overhead (no implicit solves involved). However, it will

not “break” material Courant (heat conduction Fourier) limits, as the frac-

tional steps stabilizer expected to do. This will be achieved by the following

“implicit” stabilizer option.

4. Implicit stabilizer. In this option, one would also solve for “predictor”

values of void fraction α̂′
k

and internal energy ˆ̃u′
m

corrections, but in this

case using “implicit” version of eq.(4.85). Here, we also ignore (“operator-

split”) p̄′, and D
(k)

(e,α′)
D

(k)

(e,u′)
(the last two for mass stabilizers only). Thus,
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for void fractions:

α̂′
k
−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W
−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ
(i,k)

D
(i)

(ρ,α′)
...

δ
(j,k)

D
(j)

(e,α′)
...

N−1∑
n=0

(
δ
(n,k)

D
(n)

(ρ,α′)

)
N−1∑
n=0

(
δ
(n,k)

D
(n)

(e,α′)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0,...,N−2︸ ︷︷ ︸
Implicit operator on α̂′

k

=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−σ
(i,e)

(ρ,α′)

(
1−

N−1∑
n=0

α�
n

)
− r�

αi
Δt2

...

−σ
(j,e)

(e,α′)

(
1−

N−1∑
n=0

α�
n

)
−

r�ej
Δt2

...
N−1∑
n=0

(
− r�

αn
Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(ρ,α′) + σ
(e)

(ρ,α′)

)(
1−

N−1∑
l=0

α�
l

)
N−1∑
n=0

(
− r�en

Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(e,α′) + σ
(e)

(e,α′)

)(
1−

N−1∑
l=0

α�
l

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0,...,N−2

(i, k) = 0, ..., N − 1; i �= e
j = 0, ..., N − 1

(4.93)

where

δ
(i,j)

=

{
1 if i = j

0 otherwise

These (N−1) decoupled implicit equations should be solved for each α̂′
k

in

a sequence, by an appropriate iterative method. Next, compute the remain-

ing (eliminated) void fraction α̂′
e

with compatibility equation (4.91). After

this step, we can compute D
(k)

(ρ,α′)

(
α̂′

k

)
and D

(k)

(e,α′)

(
α̂′

k

)
for k=0,...,N−1, using

eqs.(4.62) and (4.74). These can be used in the following implicit phasic
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specific energy correction equations:

ˆ̃u′
k
−

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W
−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ
(i,k)

D
(i)

(ρ,u′)
...

δ
(j,k)

D
(j)

(e,u′)
...

N−1∑
n=0

(
δ
(n,k)

D
(n)

(ρ,u′)

)
N−1∑
n=0

(
δ
(n,k)

D
(n)

(e,u′)

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0,...,N−2︸ ︷︷ ︸
Implicit operator on ˆ̃u′

k

=

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
W−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D
(i)

(ρ,α′) − σ
(i,e)

(ρ,α′)

(
1−

N−1∑
n=0

α�
n

)
−

r�
α
i

Δt2

...

D
(j)

(e,α′) − σ
(j,e)

(e,α′)

(
1−

N−1∑
n=0

α�
n

)
−

r�
e
j

Δt2

...
N−1∑
n=0

(
D

(n)

(ρ,α′) −
r�
αn
Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(ρ,α′) + σ
(e)

(ρ,α′)

)(
1−

N−1∑
l=0

α�
l

)
N−1∑
n=0

(
D

(n)

(e,α′) −
r�
en

Δt2

)
−
(

N−1∑
n=0, �=e

σ
(n,e)

(e,α′) + σ
(e)

(e,α′)

)(
1−

N−1∑
l=0

α�
l

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

0,...,N−2

i = 0, ..., N − 1; i �= e
(j, k) = 0, ..., N − 1

(4.94)

Now, we can compute D
(k)

(ρ,u′)

(
ˆ̃u′
k

)
and D

(k)

(e,u′)

(
ˆ̃u′
k

)
using eqs.(4.63) and

(4.75), and, finally, incorporate all D
(k)

(ρ,α′)

(
α̂′

k

)
, D

(k)

(e,α′)

(
α̂′

k

)
, D

(k)

(ρ,u′)

(
ˆ̃u′
k

)
and D

(k)

(e,u′)

(
ˆ̃u′
k

)
into the pressure correction P

′
HE eq.(4.86).

4.3.8 Outline of the fractional step version
In this section, we will summarize the fractional step version of the algorithm.

1. Start with given solution vector state V
�
. Under operator-splitting, this vec-

tor is set to V
n
. In the non-linear iteration algorithms (either Picard- or

Newton-based), the first guess is set as V
�
= V

n
.
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2. Compute non-linear momentum residual vector r�
v
k

defined by eq.(4.47).

3. Velocity stabilizer. Solve N implicit equations (4.54) for ˆ̃v′
k
. This step

should break stability limits associated with material Courant and (if mod-

eled) turbulent viscosity Fourier number. Predictor velocity ˆ̃v′
k

can now be

used to compute D′
v
k

(
∇ · ˆ̃v′

k

)
, eq.(4.43), which is absorbed into r�

vm
as in

eq.(4.53).

4. Mass stabilizer. Solve (N − 1) implicit equations (4.93) for α̂′
k
, and com-

pute the remaining (eliminated) void fraction α̂′
e

with compatibility equa-

tion (4.91). After this step, we can compute D
(k)

(ρ,α′)

(
α̂′

k

)
and D

(k)

(e,α′)

(
α̂′

k

)
for

k=0,...,N−1, using eqs.(4.62) and (4.74). This step should eliminate stability

limit associated with material Courant.

5. Energy stabilizer. Solve N implicit equations (4.94) for ˆ̃u′
k
. Now, we can

compute D
(k)

(ρ,u′)

(
ˆ̃u′
k

)
and D

(k)

(e,u′)

(
ˆ̃u′
k

)
using eqs.(4.63) and (4.75), and, fi-

nally, incorporate all D
(k)

(ρ,α′)

(
α̂′

k

)
, D

(k)

(e,α′)

(
α̂′

k

)
, D

(k)

(ρ,u′)

(
ˆ̃u′
k

)
and D

(k)

(e,u′)

(
ˆ̃u′
k

)
into the pressure correction P

′
HE eq.(4.86). This step should eliminate sta-

bility limits associated with material Courant and (if modeled) turbulent

heat conduction Fourier number.

6. Pressure correction P′HE. Solve implicit equation (4.86) for p̄′. This pres-

sure enforces all phasic mass, energy conservation, as well as phase com-
patibility condition.

7. Compute the r.h.s. vector f (∇p̄′,∇2p̄′) and the phasic void fraction and in-

ternal energy corrections, using eq.(4.87). These also DO satisfy mass/energy

conservation and compatibility condition.

8. Next, compute the void fraction for the eliminated phase α′
e

using equation

(4.77).

9. Compute p′
v
k

, a′
v
k

and u′
v
k

with eqs.(4.44)-(4.46), and then phasic velocities

ṽ′
k

by eq.(4.50).

10. Newton, preconditioning: done for preconditioning of the Newton-based

algorithm. Return φ′ as δ 
X a

V
, see Section 6.5.
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11. Update all solution variables V
��

with eq.(4.26).

12. Operator-splitting: done, i.e. V
n+1

= V
��

.

13. Picard-based algorithm: Check convergence. If not converged, reset V
�
=

V
��

and return to step 2. If converged, V
n+1

= V
��

and done.

4.3.9 P′HE for single-fluid formulation

The vector of unknowns for 1-fluid P
′
HE system is

[
ũ′

p̄′

]
.

The friction coefficient matrix is simply

F = ρ̄� − ζ�
v

The wavenumber matrix W becomes

W =

[
σ

(ρ,u′) σ
(ρ,p′)

σ
(e,u′) σ

(e,p′)

]
(4.95)

where

σ
(0)

(ρ,u′)
= 1

Δt2

(
ρ̄�

ũ
− η�

ρ
− ζ�

ρ
· η�

v
−ρ̄�

ũ
ṽ�

ρ̄�−ζ�v

)

σ
(0)

(ρ,p′)
= 1

Δt2

(
ρ̄�

p̄
− ν�

ρ
− ζ�

ρ
· ν�

v−ρ̄�
p̄
ṽ�

ρ̄�−ζ�v

)

σ
(e,u′) =

1
Δt2

(
ρ̄� + ẽ�ρ̄�

ũ
− η�

e
+
(
ρ̄�ṽ� − ζ�

e

) · η�
v
−ρ̄�

ũ
ṽ�

ρ̄�−ζ�v

)

σ
(e,p′) =

1
Δt2

(
ẽ�ρ̄�

p̄
− ν�

e
+
(
ρ̄�ṽ� − ζ�

e

) · ν�
v−ρ̄�

p̄
ṽ�

ρ̄�−ζ�v

)
(4.96)

The vector f reduces to

f =

⎡
⎢⎢⎢⎣

Lρ (∇p̄′,∇2p̄′) +D
(ρ,u′) −

r�
α

Δt2

Le (∇p̄′,∇2p̄′) +D
(e,u′) −

r�
e

Δt2

⎤
⎥⎥⎥⎦ (4.97)
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where

r�
α

= ρ̄� − ρ̄n +Δt∇ρ ·
(
ρ̄�
[
ṽ� − r�v

ρ̄�−ζ�v

])
− γ�

ρ
− ζ�

ρ
· r�v
ρ̄�−ζ�v

(4.98)

Lρ

(∇p̄′,∇2p̄′
)

= 1

Δt(ρ̄�−ζ�v)
ζ�

ρ
·
(
∇v p̄

′ −∇v ·
(
ρ̄�

p̄
(ṽ� ⊗ ṽ�) p̄′

))
−

− 1
Δt
∇ρ ·

([
ρ̄�

p̄
ṽ� + ρ̄�

ν�
v−ρ̄�

p̄
ṽ�

ρ̄�−ζ�v

]
p̄′ + Δtρ̄�

ρ̄�−ζ�v

[
∇v p̄

′ −∇v ·
(
ρ̄�

p̄
(ṽ� ⊗ ṽ�) p̄′

)]) (4.99)

D
(ρ,u′) = − 1

Δt(ρ̄�−ζ�v)
ζ�

ρ
· (∇v · (ρ̄�

ũ
(ṽ� ⊗ ṽ�) ũ′

))−
− 1

Δt∇ρ ·
([

ρ̄�
ũ
ṽ� +

ρ̄�η̂�
v

ρ̄�−ζ�v

]
ũ′ − Δtρ̄�

ρ̄�−ζ�v

[∇v · (ρ̄�
ũ
(ṽ� ⊗ ṽ�) ũ′

)]) (4.100)

r�
e
= ρ̄�ẽ� − (ρ̄ẽ)n − γ�

e
− (ρ̄�ṽ� − ζ�

e

) · r�v
ρ̄�−ζ�v

+

+Δt∇e ·
(

(ρ̄�ẽ� + p̄�)
(
ṽ� − r�v

ρ̄�−ζ�v

)
− ρ̄�ṽ�

(
ṽ� · r�v

ρ̄�−ζ�v

) ) (4.101)

Le

(∇p̄′,∇2p̄′
)

= − ρ̄�ṽ�−ζ�
e

Δt(ρ̄�−ζ�v)
·
(
∇v p̄

′ −∇v ·
(
ρ̄�
p̄
(ṽ� ⊗ ṽ�) p̄′

))
−

− 1
Δt∇ek

·

⎛
⎜⎜⎜⎜⎜⎜⎝

[(
1 + ẽ�ρ̄�

p̄

)
ṽ� + (ρ̄�ẽ�+p̄�)

ρ̄�−ζ�v

(
ν�

v
− ρ̄�

p̄
ṽ�
)]

p̄′+

+ ρ̄�

ρ̄�−ζ�v
ṽ�
[
ṽ� ·

(
ν�

v
− ρ̄�

p̄
ṽ�
)]

p̄′+

+ Δtρ̄�

ρ̄�−ζ�v
ṽ�
(
ṽ� ·

[
∇v p̄

′ −∇v ·
(
ρ̄�
p̄
(ṽ� ⊗ ṽ�) p̄′

)])
+

+Δt(ρ̄�ẽ�+p̄�)
ρ̄�−ζ�v

[
∇v p̄

′ −∇v ·
(
ρ̄�
p̄
(ṽ� ⊗ ṽ�) p̄′

)]

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.102)

D
(e,u′) =

ρ̄�ṽ�−ζ�
e

Δt(ρ̄�−ζ�v)
· (∇v · (ρ̄�

ũ
(ṽ� ⊗ ṽ�) ũ′

))−

− 1
Δt∇e ·

⎛
⎜⎜⎜⎜⎜⎝

[(
ρ̄� + ẽ�ρ̄�

ũ

)
ṽ� + (ρ̄�ẽ�+p̄�)

ρ̄�−ζ�v

(
η�

v
− ρ̄�

ũ
ṽ�
)]

ũ′+

+ ρ̄�

ρ̄�−ζ�v
ṽ�
[
ṽ� · (η�

v
− ρ̄�

ũ
ṽ�
)]

ũ′+

− Δtρ̄�

ρ̄�−ζ�v
ṽ�
(
ṽ� · [∇v · (ρ̄�

ũ
(ṽ� ⊗ ṽ�) ũ′

)])
+

−Δt(ρ̄�ẽ�+p̄�)
ρ̄�−ζ�v

(∇v · (ρ̄�
ũ
(ṽ� ⊗ ṽ�) ũ′

))

⎞
⎟⎟⎟⎟⎟⎠

(4.103)
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and

r�
v

= ρ̄�ṽ� − (ρ̄ṽ)n − γ�
v
+Δt [∇v · (ρ̄�ṽ� ⊗ ṽ�)−∇v p̄

�] (4.104)

With these, the single-fluid version of the P
′
HE equation24 (4.86) becomes:

Δt2

ρ̄�

(
σ

(ρ,u′)f2 − σ
(e,u′)f1 − p̄′D

)
= 0 (4.107)

where D =
(
σ

(ρ,u′)σ(e,p′) − σ
(ρ,p′)σ(e,u′)

)
is a determinant of the matrix W. The

wavenumber associated with this P
′
HE is

κ2 = Δt2
σ

(ρ,p′)σ(e,u′) − σ
(ρ,u′)σ(e,p′)

ρ̄�
(4.108)

To simplify discussion, lets ignore the sources in mass, momentum and energy

equations25. Then,

κ2 =
1

c2sp̄Δt2
(4.109)

where the square of speed of sound is defined as c2sp̄ ≡ 1
ρ̄�
p̄

.

Note, that when compressibility of a fluid reduces, csp̄ → ∞ (as ρ̄�
p̄
→ 0), and

eq.(4.107) approaches the pressure Poisson form, κ → 0.

24 Strictly speaking, Helmholtz equation is defined as

∇2P + κ2P = 0 (4.105)

while eq.(4.107) is more complex:

∇ · (a∇P ) + κ2P + b · ∇P +∇ · (cP ) = d (4.106)

25It can be seen that the sources do change the wavenumber, and, therefore, the effective

speed of sound.
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4.3.10 P′HE for 2-fluid formulation

The vector of unknowns for two-fluid P
′
HE system is

⎡
⎢⎢⎣

α′
0

ũ′
0

ũ′
1

p̄′

⎤
⎥⎥⎦ , where we used

e=1.

In the case of “mixture system” formulation, the wavenumber matrix W be-

comes

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(0)

(ρ,α′) − σ
(0,1)

(ρ,α′) σ
(0)

(ρ,u′) σ
(0,1)

(ρ,u′) σ
(0)

(ρ,p′)

σ
(0)

(e,α′) − σ
(0,1)

(e,α′) σ
(0)

(e,u′)
σ

(0,1)

(e,u′) σ
(0)

(e,p′)

σ
(0)

(ρ,α′) − σ
(1)

(ρ,α′)+

+σ
(1,0)

(ρ,α′) − σ
(0,1)

(ρ,α′)

σ
(0)

(ρ,u′) + σ
(1,0)

(ρ,u′) σ
(1)

(ρ,u′) + σ
(0,1)

(ρ,u′) σ
(0)

(ρ,p′) + σ
(1)

(ρ,p′)

σ
(0)

(e,α′) − σ
(1)

(e,α′)+

+σ
(1,0)

(e,α′) − σ
(0,1)

(e,α′)

σ
(0)

(e,u′) + σ
(1,0)

(e,u′) σ
(1)

(e,u′) + σ
(0,1)

(e,u′) σ
(0)

(e,p′) + σ
(1)

(e,p′)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.110)

where

σ
(0)

(ρ,α′) =
1

Δt2

⎡
⎣ ρ̄�

0
− μ�

ρ(0,0)
− ζ�

ρ(0,0)
·
(
F−1

(0,0)
μ̂�

v(0)
+ F−1

(0,1)
μ̂�

v(0,1)

)
−

− ζ�
ρ(1,0)

·
(
F−1

(1,0)
μ̂�

v(0)
+ F−1

(1,1)
μ̂�

v(0,1)

)
⎤
⎦

σ
(0)

(ρ,u′) =
1

Δt2

⎡
⎣ α�

0
ρ̄�
ũ0

− η�
ρ(0,0)

− ζ�
ρ(0,0)

·
(
F−1

(0,0)
η̂�

v(0)
+ F−1

(0,1)
η̂�

v(0,1)

)
−

− ζ�
ρ(1,0)

·
(
F−1

(1,0)
η̂�

v(0)
+ F−1

(1,1)
η̂�

v(0,1)

)
⎤
⎦

σ
(0)

(ρ,p′) =
1

Δt2

⎡
⎢⎢⎣ α�

0
ρ̄�
p̄0

− ν�
ρ0

− ζ�
ρ(0,0)

·
(

F−1
(0,0)

ω�
0

+
F−1

(0,1)

ω�
1

)
−

− ζ�
ρ(1,0)

·
(

F−1
(1,0)

ω�
0

+
F−1

(1,1)

ω�
1

)
⎤
⎥⎥⎦

(4.111)
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σ
(1)

(ρ,α′) =
1

Δt2

⎡
⎣ ρ̄�

1
− μ�

ρ(1,1)
− ζ�

ρ(0,1)
·
(
F−1

(0,1)
μ̂�

v(1)
+ F−1

(0,0)
μ̂�

v(1,0)

)
−

− ζ�
ρ(1,1)

·
(
F−1

(1,1)
μ̂�

v(1)
+ F−1

(1,0)
μ̂�

v(1,0)

)
⎤
⎦

σ
(1)

(ρ,u′) =
1

Δt2

⎡
⎣ α�

1
ρ̄�
ũ1

− η�
ρ(1,1)

− ζ�
ρ(0,1)

·
(
F−1

(0,1)
η̂�

v(1)
+ F−1

(0,0)
η̂�

v(1,0)

)
−

− ζ�
ρ(1,1)

·
(
F−1

(1,1)
η̂�

v(1)
+ F−1

(1,0)
η̂�

v(1,0)

)
⎤
⎦

σ
(1)

(ρ,p′) =
1

Δt2

⎡
⎢⎢⎣ α�

1
ρ̄�
p̄1

− ν�
ρ1

− ζ�
ρ(0,1)

·
(

F−1
(0,0)

ω�
0

+
F−1

(0,1)

ω�
1

)
−

− ζ�
ρ(1,1)

·
(

F−1
(1,0)

ω�
0

+
F−1

(1,1)

ω�
1

)
⎤
⎥⎥⎦

(4.112)

σ
(0)

(e,α′)
=

1

Δt2

⎡
⎢⎢⎢⎢⎢⎣

ρ̄�
0
ẽ�
0
− μ�

e(0,0)
−Δt

(
ṽ�

0
· ∇e0

α�
0

)
μ�

δp̄I(0)
−

−
[
Δt
(
p̄� + γ�

δp̄I

)
∇e0

α�
0
− α�

0
ρ̄�
0
ṽ�

0

]
·
(
F−1

(0,0)
μ̂�

v(0)
+ F−1

(0,1)
μ̂�

v(0,1)

)
−

−
[
Δt
(
ṽ�

0
· ∇e0

α�
0

)
ζ�

δp̄I(0)
+ ζ�

e(0,0)

]
·
(
F−1

(0,0)
μ̂�

v(0)
+ F−1

(0,1)
μ̂�

v(0,1)

)
−

−
[
Δt
(
ṽ�

0
· ∇e0

α�
0

)
ζ�

δp̄I(1)
+ ζ�

e(1,0)

]
·
(
F−1

(1,0)
μ̂�

v(0)
+ F−1

(1,1)
μ̂�

v(0,1)

)

⎤
⎥⎥⎥⎥⎥⎦ (4.113)

σ
(1)

(e,α′)
=

1

Δt2

⎡
⎢⎢⎢⎢⎢⎣

ρ̄�
1
ẽ�
1
− μ�

e(1,1)
−Δt

(
ṽ�

1
· ∇e1

α�
1

)
μ�

δp̄I(1)
−

−
[
Δt
(
p̄� + γ�

δp̄I

)
∇e1

α�
1
− α�

1
ρ̄�
1
ṽ�

1

]
·
(
F−1

(1,1)
μ̂�

v(1)
+ F−1

(1,0)
μ̂�

v(1,0)

)
−

−
[
Δt
(
ṽ�

1
· ∇e1

α�
1

)
ζ�

δp̄I(0)
+ ζ�

e(0,1)

]
·
(
F−1

(0,1)
μ̂�

v(1)
+ F−1

(0,0)
μ̂�

v(1,0)

)
−

−
[
Δt
(
ṽ�

0
· ∇e1

α�
1

)
ζ�

δp̄I(1)
+ ζ�

e(1,1)

]
·
(
F−1

(1,1)
μ̂�

v(1)
+ F−1

(1,0)
μ̂�

v(1,0)

)

⎤
⎥⎥⎥⎥⎥⎦ (4.114)

σ
(0)

(e,u′)
=

1

Δt2

⎡
⎢⎢⎢⎢⎢⎣

α�
0

(
ρ̄�
0
+ ẽ�

0
ρ̄�
ũ0

)
− η�

e(0,0)
−Δt

(
ṽ�

0
· ∇e0

α�
0

)
η�
δp̄I(0)

−
−
[
Δt
(
p̄� + γ�

δp̄I

)
∇e0

α�
0
− α�

0
ρ̄�
0
ṽ�

0

]
·
(
F−1

(0,0)
η̂�

v(0)
+ F−1

(0,1)
η̂�

v(0,1)

)
−

−
[
Δt
(
ṽ�

0
· ∇e0

α�
0

)
ζ�

δp̄I(0)
+ ζ�

e(0,0)

]
·
(
F−1

(0,0)
η̂�

v(0)
+ F−1

(0,1)
η̂�

v(0,1)

)
−

−
[
Δt
(
ṽ�

0
· ∇e0

α�
0

)
ζ�

δp̄I(1)
+ ζ�

e(1,0)

]
·
(
F−1

(1,0)
η̂�

v(0)
+ F−1

(1,1)
η̂�

v(0,1)

)

⎤
⎥⎥⎥⎥⎥⎦ (4.115)
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σ
(1)

(e,u′)
=

1

Δt2

⎡
⎢⎢⎢⎢⎢⎣

α�
1

(
ρ̄�
1
+ ẽ�

1
ρ̄�
ũ1

)
− η�

e(1,1)
−Δt

(
ṽ�

1
· ∇e1

α�
1

)
η�
δp̄I(1)

−
−
[
Δt
(
p̄� + γ�

δp̄I

)
∇e1

α�
1
− α�

1
ρ̄�
1
ṽ�

1

]
·
(
F−1

(1,1)
η̂�

v(1)
+ F−1

(1,0)
η̂�

v(1,0)

)
−

−
[
Δt
(
ṽ�

1
· ∇e1

α�
1

)
ζ�

δp̄I(0)
+ ζ�

e(0,1)

]
·
(
F−1

(0,1)
η̂�

v(1)
+ F−1

(0,0)
η̂�

v(1,0)

)
−

−
[
Δt
(
ṽ�

1
· ∇e1

α�
1

)
ζ�

δp̄I(1)
+ ζ�

e(1,1)

]
·
(
F−1

(1,1)
η̂�

v(1)
+ F−1

(1,0)
η̂�

v(1,0)

)

⎤
⎥⎥⎥⎥⎥⎦ (4.116)

σ
(0)

(e,p′)
=

1

Δt2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α�
0
ẽ�
0
ρ̄�
p̄0

− ν�
e0

−Δt
(
ṽ�

0
· ∇e0

α�
0

)(
1 + ν�

δp̄I

)
−

−
[
Δt
(
p̄� + γ�

δp̄I

)
∇e0

α�
0
− α�

0
ρ̄�
0
ṽ�

0

]
·
(

F−1
(0,0)

ω�
0

+
F−1

(0,1)

ω�
1

)
−

−
[
Δt
(
ṽ�

0
· ∇e0

α�
0

)
ζ�

δp̄I(0)
+ ζ�

e(0,0)

]
·
(

F−1
(0,0)

ω�
0

+
F−1

(0,1)

ω�
1

)
−

−
[
Δt
(
ṽ�

0
· ∇e0

α�
0

)
ζ�

δp̄I(1)
+ ζ�

e(1,0)

]
·
(

F−1
(1,0)

ω�
0

+
F−1

(1,1)

ω�
1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.117)

σ
(1)

(e,p′)
=

1

Δt2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α�
1
ẽ�
1
ρ̄�
p̄1

− ν�
e1

−Δt
(
ṽ�

1
· ∇e1

α�
1

)(
1 + ν�

δp̄I

)
−

−
[
Δt
(
p̄� + γ�

δp̄I

)
∇e1

α�
1
− α�

1
ρ̄�
1
ṽ�

1

]
·
(

F−1
(1,0)

ω�
0

+
F−1

(1,1)

ω�
1

)
−

−
[
Δt
(
ṽ�

1
· ∇e1

α�
1

)
ζ�

δp̄I(0)
+ ζ�

e(0,1)

]
·
(

F−1
(0,0)

ω�
0

+
F−1

(0,1)

ω�
1

)
−

−
[
Δt
(
ṽ�

1
· ∇e1

α�
1

)
ζ�

δp̄I(1)
+ ζ�

e(1,1)

]
·
(

F−1
(1,0)

ω�
0

+
F−1

(1,1)

ω�
1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.118)

σ
(0,1)

(ρ,α′) = −
μ�
ρ(1,0)

Δt2
−

ζ�
ρ(0,0)

Δt2
·
(
F−1

(0,1)
μ̂�

v(1)
+ F−1

(0,0)
μ̂�

v(1,0)

)
−

−
ζ�
ρ(1,0)

Δt2
·
(
F−1

(1,1)
μ̂�

v(1)
+ F−1

(1,0)
μ̂�

v(1,0)

) (4.119)

σ
(1,0)

(ρ,α′) = −
μ�
ρ(0,1)

Δt2
−

ζ�
ρ(0,1)

Δt2
·
(
F−1

(0,0)
μ̂�

v(0)
+ F−1

(0,1)
μ̂�

v(0,1)

)
−

−
ζ�
ρ(1,1)

Δt2
·
(
F−1

(1,0)
μ̂�

v(0)
+ F−1

(1,1)
μ̂�

v(0,1)

) (4.120)

σ
(0,1)

(ρ,u′) = −
η�
ρ(1,0)

Δt2
−

ζ�
ρ(0,0)

Δt2
·
(
F−1

(0,1)
η̂�

v(1)
+ F−1

(0,0)
η̂�

v(1,0)

)
−

−
ζ�
ρ(1,0)

Δt2
·
(
F−1

(1,1)
η̂�

v(1)
+ F−1

(1,0)
η̂�

v(1,0)

) (4.121)
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σ
(1,0)

(ρ,u′) = −
η�
ρ(0,1)

Δt2
−

ζ�
ρ(0,1)

Δt2
·
(
F−1

(0,0)
η̂�

v(0)
+ F−1

(0,1)
η̂�

v(0,1)

)
−

−
ζ�
ρ(1,1)

Δt2
·
(
F−1

(1,0)
η̂�

v(0)
+ F−1

(1,1)
η̂�

v(0,1)

) (4.122)

σ
(0,1)

(e,α′) = −
μ�
e(1,0)

+Δt
(
ṽ�
0
·∇e0

α�
0

)
μ�
δp̄I(1)

Δt2
−

−
Δt

[(
p̄�+γ�

δp̄I

)
∇e0

α�
0
+
(
ṽ�
0
·∇e0

α�
0

)
ζ�
δp̄I(0)

]
−α�

0
ρ̄�
0
ṽ�
0
+ζ�

e(0,0)

Δt2
·
(
F−1

(0,1)
μ̂�

v(1)
+ F−1

(0,0)
μ̂�

v(1,0)

)
−

−
Δt
(
ṽ�
0
·∇e0

α�
0

)
ζ�
δp̄I(1)

+ζ�
e(1,0)

Δt2
·
(
F−1

(1,1)
μ̂�

v(1)
+ F−1

(1,0)
μ̂�

v(1,0)

)
(4.123)

σ
(1,0)

(e,α′) = −
μ�
e(0,1)

+Δt
(
ṽ�
1
·∇e1

α�
1

)
μ�
δp̄I(0)

Δt2
−

−
Δt

[(
p̄�+γ�

δp̄I

)
∇e1

α�
1
+
(
ṽ�
1
·∇e1

α�
1

)
ζ�
δp̄I(1)

]
−α�

1
ρ̄�
1
ṽ�
1
+ζ�

e(1,1)

Δt2
·
(
F−1

(1,0)
μ̂�

v(0)
+ F−1

(1,1)
μ̂�

v(0,1)

)
−

−
Δt
(
ṽ�
1
·∇e1

α�
1

)
ζ�
δp̄I(0)

+ζ�
e(0,1)

Δt2
·
(
F−1

(0,0)
μ̂�

v(0)
+ F−1

(0,1)
μ̂�

v(0,1)

)
(4.124)

σ
(0,1)

(e,u′) = −
η�
e(1,0)

+Δt
(
ṽ�
0
·∇e0

α�
0

)
η�
δp̄I(1)

Δt2
−

−
Δt

[(
p̄�+γ�

δp̄I

)
∇e0

α�
0
+
(
ṽ�
0
·∇e0

α�
0

)
ζ�
δp̄I(0)

]
−α�

0
ρ̄�
0
ṽ�
0
+ζ�

e(0,0)

Δt2
·
(
F−1

(0,1)
η̂�

v(1)
+ F−1

(0,0)
η̂�

v(1,0)

)
−

−
Δt
(
ṽ�
0
·∇e0

α�
0

)
ζ�
δp̄I(1)

+ζ�
e(1,0)

Δt2
·
(
F−1

(1,1)
η̂�

v(1)
+ F−1

(1,0)
η̂�

v(1,0)

)
(4.125)

σ
(1,0)

(e,u′) = −
η�
e(0,1)

+Δt
(
ṽ�
1
·∇e1

α�
1

)
η�
δp̄I(0)

Δt2
−

−
Δt

[(
p̄�+γ�

δp̄I

)
∇e1

α�
1
+
(
ṽ�
1
·∇e1

α�
1

)
ζ�
δp̄I(1)

]
−α�

1
ρ̄�
1
ṽ�
1
+ζ�

e(1,1)

Δt2
·
(
F−1

(1,0)
η̂�

v(0)
+ F−1

(1,1)
η̂�

v(0,1)

)
−

−
Δt
(
ṽ�
1
·∇e1

α�
1

)
ζ�
δp̄I(0)

+ζ�
e(0,1)

Δt2
·
(
F−1

(0,0)
η̂�

v(0)
+ F−1

(0,1)
η̂�

v(0,1)

)
(4.126)
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In the case of “phasic system” formulation, the wavenumber matrix W is

W =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(0)

(ρ,α′) − σ
(0,1)

(ρ,α′) σ
(0)

(ρ,u′) σ
(0,1)

(ρ,u′) σ
(0)

(ρ,p′)

σ
(0)

(e,α′) − σ
(0,1)

(e,α′) σ
(0)

(e,u′)
σ

(0,1)

(e,u′) σ
(0)

(e,p′)

σ
(1,0)

(ρ,α′) − σ
(1)

(ρ,α′) σ
(1,0)

(ρ,u′) σ
(1)

(ρ,u′) σ
(1)

(ρ,p′)

σ
(1,0)

(e,α′) − σ
(1)

(e,α′) σ
(1,0)

(e,u′) σ
(1)

(e,u′) σ
(1)

(e,p′)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.127)

Eq.(4.48) becomes:[ F1,1 F1,2

F2,1 F2,2

]
︸ ︷︷ ︸

F

[
ṽ′

0

ṽ′
1

]
=

[
m′

0

m′
1

]
(4.128)

where F
i,j

are operators acting on a vector 〈...〉, defined as:

F1,1 (〈...〉) =
(
α�

0
ρ̄�
0
− ζ�

v(0,0)

)
〈...〉+Δt

[(
ζ�

Δp̄(0,0)
+ ζ�

δp̄I(0)

)
· 〈...〉

]
∇v0

α�
0

F1,2 (〈...〉) = ζ�
v(1,0)

〈...〉+Δt
[(

ζ�
Δp̄(1,0)

+ ζ�
δp̄I(1)

)
· 〈...〉

]
∇v0

α�
0

F2,1 (〈...〉) = ζ�
v(0,1)

〈...〉+Δt
[(

ζ�
Δp̄(0,1)

+ ζ�
δp̄I(0)

)
· 〈...〉

]
∇v1

α�
1

F2,2 (〈...〉) =
(
α�

1
ρ̄�
1
− ζ�

v(1,1)

)
〈...〉+Δt

[(
ζ�

Δp̄(1,1)
+ ζ�

δp̄I(1)

)
· 〈...〉

]
∇v1

α�
1

(4.129)

These operators are sufficient to define F−1
(k,m)

, which are necessary for computa-

tion of the wavenumber matrix.

Case-1: Ignoring closures and pressure differences

Lets consider a particular case when we ignore source terms (and all closures)

dependence on the vector of unknowns, and also drop dynamic interfacial pressure
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and phasic bulk pressure difference terms. In this case,

F−1
(k,m)

=

⎧⎨
⎩

1
α�
k
ρ̄�
k

if k = m

0 otherwise

(4.130)

σ
(0)

(ρ,α′) =
ρ̄�
0

Δt2
; σ

(0)

(ρ,u′) =
α�
0
ρ̄�
ũ0

Δt2
; σ

(0)

(ρ,p′) =
ρ̄�
p̄0

Δt2

σ
(1)

(ρ,α′) =
ρ̄�
1

Δt2
; σ

(1)

(ρ,u′) =
α�
1
ρ̄�
ũ1

Δt2
; σ

(1)

(ρ,p′) =
ρ̄�
p̄1

Δt2

(4.131)

σ
(0)

(e,α′)
=

ρ̄�
0
ẽ�
0
−
(

Δtp̄�

α�
0
ρ̄�
0

∇e0
α�

0
− ṽ�

0

)
· (Δt∇v0

p̄� − ρ̄�
0
ṽ�

0

)
Δt2

(4.132)

σ
(1)

(e,α′)
=

ρ̄�
1
ẽ�
1
−
(

Δtp̄�

α�
1
ρ̄�
1

∇e1
α�

1
− ṽ�

1

)
· (Δt∇v1

p̄� − ρ̄�
1
ṽ�

1

)
Δt2

(4.133)

σ
(0)

(e,u′)
=

α�
0

(
ρ̄�

0
+ ẽ�

0
ρ̄�

ũ0

)
+
(

Δtp̄�

ρ̄�
0

∇e0
α�

0
− α�

0
ṽ�

0

)
·
(
ρ̄�

ũ0
ṽ�

0

)
Δt2

(4.134)

σ
(1)

(e,u′)
=

α�
1

(
ρ̄�

1
+ ẽ�

1
ρ̄�

ũ1

)
+
(

Δtp̄�

ρ̄�
1

∇e1
α�

1
− α�

1
ṽ�

1

)
·
(
ρ̄�

ũ1
ṽ�

1

)
Δt2

(4.135)

σ
(0)

(e,p′)
=

α�
0
ẽ�
0
ρ̄�

p̄0
−Δt

(
ṽ�

0
· ∇e0

α�
0

)
+
(

Δtp̄�

ρ̄�
0

∇e0
α�

0
− α�

0
ṽ�

0

)
·
(
ρ̄�

p̄0
ṽ�

0

)
Δt2

(4.136)

σ
(1)

(e,p′)
=

α�
1
ẽ�
1
ρ̄�

p̄1
−Δt

(
ṽ�

1
· ∇e1

α�
1

)
+
(

Δtp̄�

ρ̄�
1

∇e1
α�

1
− α�

1
ṽ�

1

)
·
(
ρ̄�

p̄1
ṽ�

1

)
Δt2

(4.137)
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and

σ
(0,1)

(ρ,α′)
= 0; σ

(1,0)

(ρ,α′)
= 0; σ

(0,1)

(ρ,u′)
= 0; σ

(1,0)

(ρ,u′)
= 0;

σ
(0,1)

(e,α′)
= 0; σ

(1,0)

(e,α′)
= 0; σ

(0,1)

(e,u′)
= 0; σ

(1,0)

(e,u′)
= 0;

(4.138)

For the wavenumber analysis, we will use the “phasic system” wavenumber

matrix eq.(4.127)26, in which each phase mass and energy equations are scaled by
Δt2

ρ̄�
k

. It can be shown that the wavenumber of the final pressure correction P
′
HE

equation is

κ2 = − ρ̄�
0
D

α0α1Δt2
(4.139)

where D is the determinant27 of the matrix Ŵ:

Ŵ = Δt2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ
(0)

(ρ,α′)
ρ̄�
0

σ
(0)

(ρ,u′)
ρ̄�
0

0
σ
(0)

(ρ,p′)
ρ̄�
0

σ
(0)

(e,α′)
ρ̄�
0

σ
(0)

(e,u′)
ρ̄�
0

0
σ
(0)

(e,p′)
ρ̄�
0

−
σ
(1)

(ρ,α′)
ρ̄�
1

0
σ
(1)

(ρ,u′)
ρ̄�
1

σ
(1)

(ρ,p′)
ρ̄�
1

−
σ
(1)

(e,α′)
ρ̄�
1

0
σ
(1)

(e,u′)
ρ̄�
1

σ
(1)

(e,p′)
ρ̄�
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.140)

26It can be seen that in this case the wavenumber matrix eq.(4.140) has four zero ele-

ments, in difference to the similar matrix of the “mixture system”, where only two ele-

ments are zero. Otherwise, these two system are mathematically identical.
27Note that the determinant D is a product of α0α1 , which indicates a degeneracy when

one of the phase dissappears – i.e. the wavenumber matrix W is uninvertable. This is the

case for both the “phasic” and “mixture” systems. Numerically, this requires a special

treatment near or at degenerate points.
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After collecting terms, equation (4.139) becomes:

κ2 = κ2
acou,0

+ κ2
acou,1

+ κ2
topo,0

+ κ2
topo,1

=

=
ω2
acou,0

+ω2
int,0

+
(
ω2
acou,1

+ω2
int,1

) ρ̄�
0

ρ̄�
1

Δt2

(4.141)

where we splitted the wavenumber into four harmonics. The first two are associ-

ated with phase acoustics:

ω2
acou,0

= 1
c2sp̄0

(
1 + α1

u0 ρ̄
�
ũ0

ρ̄�
0

)

ω2
acou,1

= 1
c2sp̄1

(
1 + α0

u1 ρ̄
�
ũ1

ρ̄�
1

) (4.142)

where the (squares of) phasic speeds of sound are defined as

c2sp̄k
≡ 1

ρ̄�
p̄k

(pressure perturbation component); and u
k

is defined as

u
k
= ẽ�

k
− (ṽ�

k

)2
Note that the terms in boxes of eq.(4.142) are associated with attenuation/accentuation
of acoustic waves by the presence of another phase. We can now define the effec-

tive speed of sound of two-phase media as

c
2φ

=

√√√√ 1

1
c2sp̄0

(
1 + α1

u0 ρ̄
�
ũ0

ρ̄�
0

)
+ 1

c2sp̄1

(
1 + α0

u1 ρ̄
�
ũ1

ρ̄�
1

) (4.143)

The other two harmonics emerged from the modeling of interfacial forces in

the form ∼ p∇α, and associated with interfacial forces and topology. We group
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these harmonics in the following form:

ω2
int,0

=

ω2

(0,0)︷ ︸︸ ︷
Δtρ̄�

ũ0
∇e0

α�
0
· ṽ�

0

ρ̄�
0

(
1−

Δt2ρ̄�
ũ1
p̄�

α�
1
ρ̄�3
1

(
∇e0

α�
0
· ∇v0

p̄�
))(

1 +
α1

α0

p̄�

ρ̄�
0
c2sp̄0

)
+

+ ρ̄�
ũ0
ρ̄�
ũ1

ṽ�
1
· ṽ�

0

ρ̄�
0
ρ̄�
1︸ ︷︷ ︸

ω2

(0,1)

Δt2p̄�

ρ̄�2
1
c2sp̄1

α�
0

α�
1

(
∇e0

α�
0
· ∇v0

p̄�
)(

1 +
α1

α2
0

)
+

+
Δtρ̄�

ũ1

ρ̄�2
1
c2sp̄0

∇v0
p̄� ·
(
−Δtp̄�

α�
1
ρ̄�
1

∇e0
α�

0
− ṽ�

1

)
︸ ︷︷ ︸

ω2

(0,2)

(
1 + α1

u0 ρ̄
�
ũ0

ρ̄�
0

)

(4.144)

and

ω2
int,1

=

ω2

(1,0)︷ ︸︸ ︷
−
Δtρ̄�

ũ1
∇e1

α�
0
· ṽ�

1

ρ̄�
1

(
1 +

Δt2ρ̄�
ũ0
p̄�

α�
0
ρ̄�3
0

(
∇e1

α�
0
· ∇v1

p̄�
))(

1 +
α0

α1

p̄�

ρ̄�
1
c2sp̄1

)
−

−ρ̄�
ũ0
ρ̄�
ũ1

ṽ�
0
· ṽ�

1

ρ̄�
0
ρ̄�
1︸ ︷︷ ︸

ω2

(1,1)

Δt2p̄�

ρ̄�2
0
c2sp̄0

α�
1

α�
0

(
∇e1

α�
0
· ∇v1

p̄�
)(

1 +
1

α1

ρ̄�
0

ρ̄�
1

c2sp̄0
c2sp̄1

)
+

+
Δtρ̄�

ũ0

ρ̄�2
0
c2sp̄1

∇v1
p̄� ·
(
Δtp̄�

α�
0
ρ̄�
0

∇e1
α�

0
− ṽ�

0

)
︸ ︷︷ ︸

ω2

(1,2)

(
1 + α0

u1 ρ̄
�
ũ1

ρ̄�
1

)

(4.145)

The multipliers in boxes are dimensionless.
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Eq.(4.141) can be interpreted as following. There are six waves in the eigen-

structure of the two-fluid averaged equations:

(1,2): Two entropy waves which propagate with material velocities ṽ�
0

and ṽ�
1
.

These can be easily identified by looking at the Jacobian of governing equa-

tions using traditional linear eigenvalue analysis.

(3,4): Two acoustic waves which are associated with fluid’ equations of state. The

wave numbers introduced by these waves are defined by eq.(4.142).

(5,6): Two internal (topology) waves which are associated with interfacial forces

and variations of void fractions. The wave numbers introduced by these

waves are defined by eqs.(4.144) and (4.145). Importantly, these waves

cannot be identified by traditional linear eigenvalue analysis of governing

equations (looking at principal modes of the Jacobian), because their wave
speeds depend on multiphase flow topology (gradients of void fraction and

pressure), un-detectable during eigen-analysis of the Jacobian matrices28.

By nature, these internal (topology) waves are different from the acoustic

ones, as they are the carriers of pressure disturbances in two phase system,

associated with (averaged) phase momentum interactions (forces) happen-

ing at material interfaces.

We argue that the model is numerically ill-posed when κ2 defined by eq.(4.141)

is negative. Note that acoustic wave modes of κ2 are always positive. Internal

(topology) wave modes however can be negative. When these negative modes

overwhelm the acoustic modes, making κ
2
< 0, the pressure correction P

′
HE

equation becomes unsolvable. Note that traditional linear eigen-analysis shows

that only two (entropy) waves are real. The other four eigenvalues are complex-
conjugate pairs29. Therefore, mathematically, the model is “ill-posed” and “non-
hyperbolic”. In practice however, we do successfully use two-fluid models in

reactor thermalhydraulics, for many safety-relevant transients. The analysis dis-

cussed above shows that the “ill-posedness” of the model should exhibit itself

(numerically) only when κ2 < 0. This should happen when the steep gradients

of void fraction developed. These steep gradients are trouble not only when they

make κ2 < 0, but also when κ2 
 0. This will induce very short waves into the

solution. Under certain grid refinement, these waves become comparable to the

28Charateristic equation and corresponding eigenvalues do not contain any terms with

spatial or temporal derivatives.
29When

(
ṽ�

0
− ṽ�

1

) �= 0 or when 0 < α
k
< 1.
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domain and grid scales, exhibiting themselves as oscillations emanating from void

discontinuities. The typical example of this behavior is the Vic Ramson’s water

faucet problem [Ran87].

Finally, we note, that when approaching incompressible limit (ρ̄
k
= const) by

setting csp̄k → ∞ and ρ̄�
ũk

→ 0, the acoustic and topology wavelengthes become

very large, κ
2 → 0, and the P

′
HE reduces to the P

′
PE (Poisson, elliptic) form.

In this case, there are no acoustic and internal (topology) waves, and the question

of ill-possedness becomes irrelevant. Internal (topology) waves however do exist

when ρ̄
k
= f

(
T̃

k

)
(e.g., when an acoustically-filtered formulation is used), as

ρ̄�
ũk

�= 0.



Chapter 5

Segregated (Picard-Iteration)
Algorithms

SEGREGATED algorithms utilize fully-implicit strategy to solve effective-field

equations, using Picard type of iterations. The basic idea is to organize outer it-

eration loops around some operator-splitting algorithm, to succesively update full

solution vector, Figure 5.1. Each outer iteration is a sequence of implicit solves for

one or a few coupled (“segregated”) equations (say, momentum-pressure, energy,

turbulent kinetic energy, etc.), continuously updating solution vector iteratively in

a Gauss-Seidel fashion. In difference to Newton-based algorithms discussed in

Chapter 6, no residual slope (Jacobians) information are involved to guide outer

iterations. Instead, a simple (Gauss-Seidel-like) iterative procedure with (possi-

ble) under-relaxations is utilized. Convergence of this type of fully-implicit solver

is rather slow – in some ocasions it might take hundreds of outer iterations to get

an acceptable tolerance (if any). This is why the design of “segregated” steps is

crucial for both efficiency and convergence (stability/robustness) of the algorithm.

The most popular approaches are derived from single-phase SIMPLE-based

solvers [PS72, Pat80]. We will discuss these algorithms first, in Section 5.1.

5.1 SIMPLE-based algorithms

Probably the first SIMPLE-based algorithm for two-fluid model is the “Inter-
Phase Slip Algorithm” (IPSA) developed by the Spalding group at Imperial Col-

lege [Spa76, Spa80, Spa81, Spa83], followed by a number of variations. As doc-

84
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Fig. 5.1 : On basic concept of segregated algorithms.
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umented by Darwish et al. [DMS01, MDS03, MD04], these algorithms can be di-

vided into two major groups, based on the principle utilized to construct pressure

correction equation: (1) Mass Conservation-Based Algorithms (MCBA) (Section

5.1.1) and (2) Geometric Conservation-Based Algorithms (GCBA) (Section 5.1.2).

Both algorithms are adoptations of SIMPLE-based single-phase flow algo-

rithms [PS72, Pat80] to solve single-pressure effective-field models. As a conse-

quence, the algorithms are focussed on coupling mass and momentum, following

different recipes to construct pressure correction equation. Energy and turbu-

lent transport equations are de-coupled and usually downstream in the pipeline

of the segregated steps of the outer iteration loop. This is in contrast to re-

actor safety codes based on “semi-implicit” algorithm, Chapter 4, which derive

pressure-Helmholtz equation more tightly coupled to energy equation. In reactor

thermalhydraulics applications, tight coupling of mass-momentum-energy is cru-

cial, due to importance of heat transfer on phase change (boiling/condensation).

Another feature of SIMPLE-based algorithms - they are not well-suited for fully-

compressible applications. There are á la ICE variations [DMS01], with lin-

earizations of equation of state similar to eq.(4.7), but these will be referred to

as weakly-compressible, as they are not the method of choice for high-speed (su-

personic) applications, for which the methods of Chapter 3 are more appropriate

and cost-effective.

5.1.1 Mass Conservation-Based Algorithms (MCBA)
MCBA algorithms utilize global mass conservation equation,

∑
k

⎡
⎢⎢⎣
∂

(
α

k

ρ̄
k

ρ
(ref)

k

)
∂t

+∇ ·
(
α

k

ρ̄
k
ṽ

k

ρ(ref)

k

)
− S

mass,k
(U)

ρ(ref)

k

⎤
⎥⎥⎦ = 0 (5.1)

to derive a pressure-correction equation. Note, that each phase mass conserva-

tion equation is scaled by its reference density ρ
(ref)

k
, which is found necessary to

balance [HB77] individual phase mass conservation errors, especially important

when there are significant variations in phase densities (like in air-water configu-

rations).
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The outer iteration loop of Figure 5.1 is organized as following:

A. Solve implicitely phasic momentum equations. No mass mass conservation

constraints are applied.

B. Form and solve (implicit) pressure-correction equation, based on global

mass conservation eq.(5.1).

C. Correct phasic velocities, densities and pressure.

D. Solve (implicitely) phasic mass conservation equations for volume frac-

tions.

E. Solve energy equations.

F. Solve turbulent transport equations (if any).

G. Check convergence.

Step A: Velocity predictor

Implicit discretization of phasic momentum equation renders the following linear

discrete form at each computational cell
(c)

:

a
(k)

c,c
ˆ̃v��

k(c)
+

N∑
n

a
(k)

c,n
ˆ̃v��

k(n)︸ ︷︷ ︸
Coupling to neighbours

+
K∑

m �=k

c
(k,m)

c

(
ṽ

(?)

k(c)
− ṽ

(?)

m(c)

)
︸ ︷︷ ︸

Coupling to other phases (in-

terfacial momentum exchange)

= b
(k)

c
(5.2)

where all coefficients a
(k)

i,j
, b

(k)

i
and c

(k,m)

i
are evaluated using currently-available

solution vector U
�

(in a Gauss-Seidel manner), as this is Picard type of itera-

tions1. We denote phasic velocities by (̂·), emphasizing that these are “predictor”

1Non-linear momentum advection terms can be linearized similar to eq.(4.17) of

Nearly-Implicit algorithm:

[ρ̄
k
ṽ

k
⊗ ṽ

k
] → ρ̄�

k
ṽ�

k
⊗ ˆ̃v��

k
(5.3)
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velocities fields, which will be corrected at Step B to satisfy mass conservation. N
is the number of neighboring cells (this and the values of a

(k)

i,j
depend of the chosed

space discretization scheme). K is the total number of phases. The source term

b
(k)

i
incorporate all local body forces, closure laws (those which are independent

of ṽ) and pressure gradient terms. Superscript (·)(?) on velocities in the interfacial

momentum exchange terms denote different treatments, which will be discussed

shortly.

In general, eq.(5.2) represents a system of (d×K) coupled linear equations,

where d is the number of dimensions. There are three variations to simplify

eq.(5.2).

I. De-coupled. Phasic momentum equations are completely de-coupled. Thus,

the following equation

(
a

(k)

c,c
+

K∑
m �=k

c
(k,m)

c

)
︸ ︷︷ ︸

ã
(k)
c,c

ˆ̃v��
k(c)

+
N∑
n

a
(k)

c,n
ˆ̃v��

k(n)︸ ︷︷ ︸
Coupling to neighbours

= b
(k)

c
+

K∑
m �=k

c
(k,m)

c
ṽ�

m(c)︸ ︷︷ ︸
b̃
(k)
c

(5.4)

is solved for ˆ̃v��
k(c)

. Phasic velocities ṽ
m �=k(c)

are frozen at the current Picard itera-

tion state.

II. Partial Elimination Algorithm (PEA). It is generally recognized that phasic

momentum decoupling is problematic for convergence of Picard iterations. To

speed-up convergence, Spalding [Spa83] introduced a better (local) coupling of

phases, using the following simple algebraic manipulation for 2-fluid configura-

tion.

Re-writing eq.(5.4) for fluid-1 as:

ṽ�
1(c)

=

b
(1)

c
+ c

(1,0)

c
ˆ̃v��

0(c)
−

N∑
n

a
(1)

c,n
ṽ�

1(n)

a(1)

c,c
+ c(1,0)

c

(5.5)

and then plugging ṽ�
1(c)

into eq.(5.4) written for k = 0, in place of ṽ�
1(c)

, and finally
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re-arranging:

Momentum equation for fluid-0:(
a

(0)

c,c
+ c

(0,1)

c

(
1− c

(1,0)

c

a(1)

c,c
+ c(1,0)

c

))
︸ ︷︷ ︸

ã
(0)
c,c

ˆ̃v��
0(c)

+
N∑
n

a
(0)

c,n
ˆ̃v��

0(n)
=

= b
(0)

c
+ c

(0,1)

c

b
(1)

c
−

N∑
n

a
(1)

c,n
ṽ�

1(n)

a(1)

c,c
+ c(1,0)

c︸ ︷︷ ︸
b̃
(0)
c

(5.6)

Exactly the same manipulations for fluid-1 leads to the following equation:

Momentum equation for fluid-1:(
a

(1)

c,c
+ c

(1,0)

c

(
1− c

(0,1)

c

a(0)

c,c
+ c(0,1)

c

))
︸ ︷︷ ︸

ã
(1)
c,c

ˆ̃v��
1(c)

+
N∑
n

a
(1)

c,n
ˆ̃v��

1(n)
=

= b
(1)

c
+ c

(1,0)

c

b
(0)

c
−

N∑
n

a
(0)

c,n
ṽ�

0(n)

a(0)

c,c
+ c(0,1)

c︸ ︷︷ ︸
b̃
(1)
c

(5.7)

Equations (5.6) and (5.7) are improvement relative to eq.(5.4) because both

phases in the interfacial momentum exchange terms are locally coupled (“im-

plicit”). Spatial variations on “the other phase” velocities are treated in a Gauss-

Seidel manner.

III. Simultaneous solution of non-linearly coupled equations (SINCE). Even

better coupling of interfacial momentum exchange terms is provided by SINCE

algorithm [Lo90]. SINCE is an improvement relative to PEA not only because

spatial variations on “the other phase” velocities are acounted for (thereby provid-

ing a better phasic momentum coupling), but also because it is easier to implement

for K > 2.
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The algorithm is implemented in a predictor-corrector manner. At the first

(predictor) step, equations similar to eq.(5.5):

ṽ�
k(c)

=

b
(k)

c
+

K∑
m �=k

c
(k,m)

c
ṽ�

m(c)
−

N∑
n

a
(k)

c,n
ṽ�

k(n)

a(k)

c,c
+

K∑
m �=k

c(k,m)

c

(5.8)

are solved at each computational cell. These are local equations, treating spatial

variations “explicitely”.

At the second (corrector) step, equations similar to eq.(5.6) and (5.7) are

solved:⎛
⎜⎜⎜⎝a

(k)

c,c
+

K∑
m �=k

⎡
⎢⎢⎢⎣c(k,m)

c

⎛
⎜⎜⎜⎝1− c

(m,k)

c

a(m)

c,c
+

K∑
j �=m

c(m,j)

c

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
ã
(k)
c,c

ˆ̃v��
k(c)

+
N∑
n

a
(k)

c,n
ˆ̃v��

k(n)
=

= b
(k)

c
+

K∑
m �=k

⎡
⎢⎢⎢⎣c(k,m)

c

b
(m)

c
+

K∑
j �=m,k

c
(m,j)

c
ṽ�

j(c)
−

N∑
n

a
(m)

c,n
ṽ�

m(n)

a(m)

c,c
+

K∑
j �=m

c(m,j)

c

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
b̃
(k)
c

(5.9)

Step B: Pressure-correction Equation

At this step, “predictor” phasic velocity fields ˆ̃v��
k

are available from Step A.

These velocity fields generally satisfy momentum balance equations, but not mass

conservation. Mass conservation is restored by forming and solving pressure-

correction equation, using the following discrete form of the global mass conser-
vation equation:

∑
k

[
α�

k
ρ̄��

k
− αn

k
ρ̄n

k

ρ(ref)

k
Δt

+∇ρk
·
(

α�
k

ρ(ref)

k

ρ̄��
k
ṽ��

k

)
− S

mass,k

(
U

�)
ρ(ref)

k

]
= 0 (5.10)
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where
(∇ρk

·) is discrete divergence operator, which is space-discretization-scheme-

dependent.

The new (corrected) pressure, velocity and density fields can be written as

p̄�� = p̄� + p̄′

ρ̄��
k

= ρ̄�
k
+ ρ̄′

k

ṽ��
k

= ˆ̃v��
k
+ ṽ′

k

(5.11)

To cook pressure-correction Helmholtz equation, let’s first consider momen-

tum conservation equations, re-writing eq.(5.2) as

ā
(k)

c,c
ˆ̃v��

k(c)
+

N∑
n

ā
(k)

c,n
ˆ̃v��

k(n)
= b̄

(k)

c
+ α�

k
∇vk

p̄� (5.12)

where we absorbed interfacial momentum exchange terms into ā
(k)

c,c
and b̄

(k)

c
, ex-

tracted pressure gradient from b
(k)

c
. Similar to all previous discussions, we de-

note by
(∇vk

)
discrete gradient operator, which is space-discretization-scheme-

dependent.

The corrected-velocity/pressure momentum equation is

ā
(k)

c,c
ṽ��

k(c)
+

N∑
n

ā
(k)

c,n
ṽ��

k(n)
= b̄

(k)

c
+ α�

k
∇vk

p̄�� (5.13)

where we kept frozen all coefficients ā
(k)

c,c
, ā

(k)

c,n
and b̄

(k)

c
– the same as in eq.(5.12)2.

Substructing eq.(5.12) from eq.(5.13) and re-arranging using eq.(5.11), yields

the following velocity-correction equations:

ṽ′
k(c)

=
α�

k

ā(k)

c,c

∇vk
p̄′ −

N∑
n �

�
�
��


d̄
(k)

c,n

ā
(k)

c,n

ā(k)

c,c

ṽ′
k(n)

(5.14)

The next step will be plugging eq.(5.11) into eq.(5.10) and linearizing non-

linear advection term as:

ρ̄��
k
ṽ��

k
=
(
ρ̄�

k
+ ρ̄′

k

) (
ˆ̃v��

k
+ ṽ′

k

)
→ ρ̄�

k

(
ˆ̃v��

k
+ ṽ′

k

)
+ ρ̄′

k
ˆ̃v��

k
+���
 0
ρ̄′

k
ṽ′

k
(5.15)

2Upon convergence of Picard iterations, this assumption will not be matter.
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The resulting equation is

∑
k

[
α�
k
(ρ̄�

k
+ρ̄′

k
)−αn

k
ρ̄n
k

ρ
(ref)

k
Δt

+∇ρk
·
(

α�
k

ρ
(ref)

k

[
ρ̄�

k

(
ˆ̃v��

k
+ ṽ′

k

)
+ ρ̄′

k
ˆ̃v��

k

])]
=

=
∑
k

S
mass,k(U

�
)

ρ
(ref)

k

(5.16)

Using the following á-la ICE linearization of equation of state3:

ρ̄′
k
= p̄′

∂ρ̄
k

∂p̄

∣∣∣∣�
ũ
k
=const

+

����������������

ũ′
k

∂ρ̄
k

∂ũ
k

∣∣∣∣�
p̄=const

(5.17)

and eq.(5.14) for ṽ′
k(c)

, the following pressure-correction variable-coefficient Helmholtz

equation is formulated:

∑
k

⎡
⎢⎣α�

k

(
ρ̄�
k
+p̄′

∂ρ̄
k

∂p̄

∣∣∣�
ũ
k
=const

)
−αn

k
ρ̄n
k

ρ
(ref)

k
Δt

+

+∇ρk
·
(

α�
k

ρ
(ref)

k

[
ρ̄�

k

(
ˆ̃v��

k
+

(
α�
k

ā
(k)
c,c

∇vk
p̄′ −

N∑
n

d̄
(k)

c,n
ṽ′

k(n)

))
+

+ ˆ̃v��
k
p̄′ ∂ρ̄

k

∂p̄

∣∣∣�
ũ
k
=const

])]
=
∑
k

S
mass,k(U

�
)

ρ
(ref)

k

(5.18)

This parabolic equation must be solved for p̄′ with some direct or iterative algo-

rithm.

A number of variations of SIMPLE algorithm are available (SIMPLER, SIM-

PLEST, PISO, SIMPLEX), all mainly different in how spatial variation of veloc-

ity correction
N∑
n

d̄
(k)

c,n
ṽ′

k(n)
is acounted for [DMS01]. These variations are mainly

important on how fast Picard iterations converge, but this term is unimportant

for fully-converged state (velocity corrections are zero). In the original SIMPLE

[PS72, Pat80], these spatial variations are neglected,

N∑
n

d̄
(k)

c,n
ṽ′

k(n)
= 0 (5.19)

3Specific internal energy correction is neglected because the energy equation is decou-

pled. This is generally not a good idea for reactor applications, where heat transfer is very

important for boiling flows.
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turning eq.(5.18) into∑
k

[
β

k

ρ(ref)

k
Δt

p̄′ +∇ρk
·
(
ˆ̃v��

k

β
k

ρ(ref)

k

p̄′ +
γ

k

ρ(ref)

k

∇vk
p̄′
)]

=
∑
k

σ
k

ρ(ref)

k

(5.20)

where

β
k
= α�

k

∂ρ̄
k

∂p̄

∣∣∣�
ũ
k
=const

γ
k
= ρ̄�

k

(α�
k
)
2

ā
(k)
c,c

σ
k
= S

mass,k

(
U

�)− α�
k
ρ̄�
k
−αn

k
ρ̄n
k

Δt
−∇ρk

·
(
α�

k
ρ̄�

k
ˆ̃v��

k

) (5.21)

We will refer for specific details of SIMPLE algorithm variations to [DMS01].

Some of them (like PISO) embed additional predictor-corrector steps within the

discussed here Steps A and B.

Step C: Pressure, velocity and density correction

After p̄′ field is determined, velocity correction is computed with eq.(5.14), den-

sity correction is computed by eq.(5.17), and new values p̄��, ρ̄��
k

and ṽ��
k

are

obtained using eq.(5.11).

Step D: Void fraction update

Through steps A to C, phasic void fractions are kept at previous Picard iteration

value α�
k
. New values α��

k
are obtained at step D, using combination of the com-

patibility equation and implicit updates of discretized phasic mass conservation

equations:

α��
k
ρ̄��

k
− αn

k
ρ̄n

k

Δt
+∇ρk

· (α��
k
ρ̄��

k
ṽ��

k

)− S
mass,k

(
U

�,��)
= 0 (5.22)

Note that new values of ρ̄��
k

are ṽ��
k

are available from Step C. By S
mass,k

(
U

�,��)
we indicate that mass source terms are computed using a combination of new

update values (ρ̄��
k

, ṽ��
k

and p̄�� are already known) and previous Picard iteration

values (specific energies are not updated yet, ũ�
k
). If mass source terms contain

void fraction, they will use α��
k

, thereby being incorporated in coefficients a
(k)

c,c
of

implicit linear equation for void fraction:

a
(k)

c,c
α��

k(c)
+

N∑
n

a
(k)

c,n
α��

k(n)
= b

(k)

c
(5.23)
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The coefficients/source a
(k)

c,c
, a

(k)

c,n
and b

(k)

c
are obviously different from those for

linearized momentum discrete equations (5.2).

There are three variations for update in Step D.

I. (N-1)+compatibility. Out of N eqs.(5.23), (N − 1) are solved implicitely for

(N − 1) void fractions α��
k

. The remaining void fraction α��
z

for a singled-out

phase (z) is computed from the compatibility equation,

α��
z

= 1−
K∑
k �=z

α��
k

(5.24)

The choice of (z) will depend on the problem. Typically, one would chose the

stiffest/heaviest phase, to reduce overall mass conservation errors.

The fact that void fractions are updated de-coupled from each other (except

for phase (z)) adversely affect convergence of Picard iterations.

II. Compatibility-based re-balancing. Slightly better option is to update all N
phasic void fractions solving eqs.(5.23) for α̃��

k
, and then enforce compatibility by

re-balancing as:

α��
k

=
α̃��

k

K∑
m

α̃��
m

(5.25)

III. Implicit compatibility-based re-balancing. As discussed in [DMS01], void

fraction rebalancing can be incorporated into implicit solves, by modifying eqs.(5.23)

as

a
(k)

c,c

(
1−

K∑
m

res
(m)

α

a(k)

c,c

)
α��

k(c)
+

N∑
n

a
(k)

c,n
α��

k(n)
= b

(k)

c
(5.26)

where residuals are defined as

res
(m)

α = a
(m)

c,c
α��

m(c)
+

N∑
n

a
(m)

c,n
α��

m(n)
− b

(m)

c
(5.27)

In this case, the equations are coupled through the diagonal terms. It is however

not clear how exactly the iterative process for this coupled system of N equations
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could be efficiently organized.

IV. Bounding with under-relaxation. The last variation we would like to discuss

addresses the bounding of phasic void fraction in the physically meaningful range

[0, 1]. α��
k

can go out of bounds during iterative process. This is acceptable if the

final converged solution is within a bound, unless the out-of-bound values crash

the iterative process. To keep α��
k

bounded, Carver [Car82] introduced procedure

with under-relaxations, modifying eq.(5.22) as:

a
(k)

c,c

β
(c)

α��
k(c)

+
N∑
n

a
(k)

c,n
α��

k(n)
= b

(k)

c
+

1− β
(c)

β
(c)

a
(k)

c,c
α�

k(c)
(5.28)

where under-relaxation parameter β
(c)

∈ [0, 1]. Carver introduced a procedure

to assign relaxation parameter to each computational cell [Car82]. This devi-

ates from the commonly used practice to have a single constant relaxation for

the whole computational domain, [Pat80]. Also, it is instructive to note that any

under-relaxation tends to negatively impact convergence of Picard iterations.

Steps E,F: Energy and the rest

The final steps of outer Picard iteration are rather straightforward. Each remaining

equation is discretized and the following linear equations are solved implicitely:

a
(k)

c,c

(
U

�,��)
Φ��

k(c)
+

N∑
n

a
(k)

c,n

(
U

�,��)
Φ��

k(n)
= b

(k)

c

(
U

�,��)
(5.29)

where Φ = ũ
k
, ..., while coefficients a

(k)

i,j
and sources b

(k)

c
are computed using

currently available Picard iteration values of the solution vector.

Remarks

1. Step A of the MCBA is somewhat similar to the “stabilizer” step for SETS

and “nearly-implicit” algorithms, Sections 4.2.1 and 4.2.2.

2. It is instructive to note that there is no guarantee that Picard iterations would

always converge to a physical solution. In fact, non-linear problem might

have multiple solutions, and “saddle” regions (with local extrema). Multi-

ple solutions are possible when the problem is ill-posed, or when hyperbolic
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part of the governing equations (i.e., the one which contain first derivatives

on time and space, thereby defining trajectory of the system and wave struc-

ture) is non-hyperbolic (i.e., the eigenvalues are complex). It is not uncon-

cievable that numerical solution might tend to be attracted to unphysical

solutions, like those with out-of-bound void fractions.

3. As noted in the discussions above, the fact that energy equation is com-

pletely de-coupled from mass and momentum in all SIMPLE-based algo-

rithms is very problematic for reactor applications. There was a reason why

all legacy reactor thermalhydraulics codes pay attention to this coupling.

However, one can easily incorporate coupling with energy, modifying iter-

ations along the lines of “semi-implicit” algorithm, Section 4.1. We are not

aware however of any such development.

5.1.2 Geometric Conservation-Based Algorithms (GCBA)
The GCBAs utilize compatibility equation to derive pressure equation. The IPSA

algorithm developed by Spalding [Spa76, Spa80, Spa81, Spa83] is an example

of GCBA. As discussed by Darwish et al. [DMS01], The GCBAs introduce a

stronger coupling between the pressure and the volume fractions, than the dis-

cussed above MCBAs.

The outer iteration loop of GCBAs is organized as following:

A. Solve (implicitely) phasic mass conservation equations for volume frac-

tions. No compatibility constraints are applied.

B. Solve implicitely phasic momentum equations. No mass mass conservation

constraints are applied.

C. Form and solve (implicit) pressure-correction equation, based on compati-

bility equation.

D. Correct phasic velocities, densities, void fractions and pressure.

E. Solve energy equations.

F. Solve turbulent transport equations (if any).
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G. Check convergence.

Step A: Void fraction update

Phasic mass conservation equations are discretized as

α̂��
k
ρ̄�

k
− αn

k
ρ̄n

k

Δt
+∇ρk

· (α̂��
k
ρ̄�

k
ṽ�

k

)− S
mass,k

(
U

�)
= 0 (5.30)

rendering N linear equations of type:

a
(k)

c,c

(
U

�)
α̂��

k(c)
+

N∑
n

a
(k)

c,n

(
U

�)
α̂��

k(n)
= b

(k)

c

(
U

�)
(5.31)

which are solved implicitely for α̂��
k(c)

. Until Picard iteration convergence is achieved,

these void fractions do not generally satisfy compatibility equation, i.e.

resα = 1−
∑
k

α̂��
k(c)

�= 0 (5.32)

and they will be corrected at the Step D.

Step B: Velocity predictor

This step is essentially the same as Step A in MCBA, except that all linear algebra

coefficients are evaluated with known from Step A values of α̂��
k(c)

.

Step C: Pressure-correction Equation

The new (corrected) pressure, velocity, void fraction and density fields can be

written as

p̄�� = p̄� + p̄′

ρ̄��
k

= ρ̄�
k
+ ρ̄′

k

α��
k

= α̂��
k
+ α′

k

ṽ��
k

= ˆ̃v��
k
+ ṽ′

k

(5.33)

The phasic mass conservation equations at this step can now be discretized as

α��
k
ρ̄��

k
− αn

k
ρ̄n

k

Δt
+∇ρk

· (α��
k
ρ̄��

k
ṽ��

k

)
= S

mass,k

(
U

�,�̂�
)

(5.34)
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Next, plugging eq.(5.33) into eq.(5.34) and linearizing non-linear terms as

α��
k
ρ̄��

k
=
(
ρ̄�

k
+ ρ̄′

k

) (
α̂��

k
+ α′

k
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k
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k
ṽ��
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k
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k

) (
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k
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k

) (
ˆ̃v��

k
+ ṽ′

k

)
→
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k
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k
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k
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+�����					ρ̄′

k
α′

k
ˆ̃v��

k
+
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k
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ṽ′

k
+�����					ρ̄′
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ṽ′
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+����				ρ̄′
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α′
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ṽ′
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(5.35)

yields:

ρ̄�
k
α̂��
k

+ρ̄�
k
α′
k
+ρ̄′
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α̂��
k

−αn
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ρ̄n
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k
+ ρ̄�

k
α̂��
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ṽ′

k

)
=

= S
mass,k

(
U

�,�̂�
) (5.36)

Finally, plugging velocity-correction eq.(5.14) for ṽ′
k(c)

and linearization of equa-

tions of state eq.(5.17) for ρ̄′
k

into eq.(5.36) results in N coupled equations for

(N + 1) unknowns (α′
k=0,...,N−1

and p̄′):

ρ̄�
k
α̂��
k

+ρ̄�
k
α′
k
+p̄′

∂ρ̄
k

∂p̄

∣∣∣�
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ṽ′
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)
= S

mass,k

(
U

�,�̂�
) (5.37)

To simplify further presentation, we collect terms and re-group eq.(5.37) as:

ρ̄�
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k
+β

k
p̄′
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·
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ˆ̃v��
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(
ρ̄�
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(5.38)

where

β
k
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) (5.39)



5.1. SIMPLE-BASED ALGORITHMS 99

As our next step, we discretize α′
k
-part of eq.(5.38), i.e. replacing

ρ̄�
k
α′

k

Δt
+∇ρk

·
(
ˆ̃v��

k
ρ̄�

k
α′

k

)
→ â

(k)
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N∑
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â
(k)
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α′
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(5.40)

to get

â
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c,c
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·
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(k)
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ṽ′
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α′
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(5.41)

Solving for α′
k(c)

:

α′
k(c)

=
σ
k
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(k)
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+∇ρk
·
(

N∑
n

d̄
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β
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) (5.42)

These are K equations. To eliminate α′
k(c)

, we can use compatibility equation:

K∑
k

(
α�

k(c)
+ α′

k(c)

)
︸ ︷︷ ︸

α��
k(c)

= 1 (5.43)

Thus, adding α�
k(c)

to the left and right hand sides of eqs.(5.42), summing over

all k, and equating to 1, the following Pressure-correction Helmholtz equation is

obtained:

K∑
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⎡
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+

σ
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+∇ρk
·
��������
 0 (SIMPLE)(
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â
(k)
c,c

p̄′ + γ
k

â
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∇vk
p̄′
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= 1

(5.44)

Spatial variations of void fraction correction are neglected. This assumption

does not affect the final (Picard-converged) solution, as α′
k

must → 0. Different
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SIMPLE algorithm implementations allow to account for spatial variations of ve-

locity corrections (see [DMS01] for SIMPLEC, PRIME, SIMPLER, SIMPLEM

algorithms). In the original SIMPLE,
N∑
n

d̄
(k)

c,n

â
(k)
c,c

ṽ′
k(n)

is neglected, yielding

K∑
k

[
β
k

â
(k)
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p̄′ +∇ρk

·
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ˆ̃v��
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β
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â
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∇vk
p̄′
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=

=
K∑
k

[
α�

k(c)
+

σ
k

â
(k)
c,c

]
− 1

(5.45)

Step D: Pressure, velocity, void fraction and density correction

Once p̄′ field is computed, velocity correction is computed with eq.(5.14), den-

sity correction is computed by eq.(5.17), void fraction correction is computed by

eq.(5.42) and new values p̄��, ρ̄��
k

, α��
k

and ṽ��
k

are obtained using eq.(5.33).

Steps E,F: Energy and the rest

The same as steps E,F of MCBA.

Remarks

1. Careful one-to-one inspection of the “semi-implicit” (Section 4.1) and the

GCBA algorithms reveals many similarities. In fact, it is reasonable to state

that the “semi-implicit” algorithm corresponds to the first Picard iteration

of the SIMPLE-GCBA, except that the “semi-implicit” algorithm misses

implicit void fraction update, but couples phasic energy equations together

with phasic mass, momentum and compatibility equations. This is in con-

trast to the SIMPLE-GCBA, which segregates the solution of energy equa-

tions. On the other hand, implicit void fraction updates of MCBA are acting

like “stabilizer” steps of SETS, Section 4.2.1.

2. Nice feature of the GCBA is that the ad hoc algorithms of MCBAs to re-

store compatibility are completely avoided. Rather, phasic compatibility

is implicitely embedded into the pressure-Helmholtz correction equation

(5.44), providing more tight coupling of void fractions and pressure. Thus,

the GCBA appears to be a better (more robust) algorithm.
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3. It is easy to see that in the limiting case of single-phase, both pressure-

correction equations – eq.(5.20) of MCBA and eq.(5.45) of GCBA collapse

into the same single-fluid pressure-correction Helmholtz equation:

β
Δt
p̄′ +∇ρ ·

(
ˆ̃v��

k
βp̄′ + γ∇v p̄

′
)
= σ (5.46)

where

β = ∂ρ̄
∂p̄

∣∣∣�
ũ=const

γ = ρ̄�

āc,c

σ = Smass

(
U

�,�̂�
)
− ρ̄�−ρ̄n

Δt
−∇ρ ·

(
ρ̄� ˆ̃v��

) (5.47)

4. It is possible to convert presentation of “semi-implicit” based algorithms

into the pressure-/velocity-/energy-/density-/void-fraction-correction form,

making comparison with SIMPLE-based algorithms more transparent.

5.2 “Semi-implicit”-based algorithm
As discussed in Chapter 4, it is rather straightforward to extend ICE-based ope-

rator-splitting “semi-implicit” (Section 4.1), SETS (Section 4.2.1) and “Nearly-
Implicit” algorithms to be fully-implicit of “segregated” type. All what is needed

is to replace “old-time” variable values in the “mixed-time” discretization terms

by some “iterative” values, and to organize outer iteration loop. As an initial guess

of these iterative values, one can use “old-time” values, which makes the first it-

eration be exactly the same as in the ancestor operator-split algorithm.

This extension make lots of sense when viscous operators (and turbulence

models) are added, since parabolic viscous and heat conduction operators better

be treated implicitely. Fractional step extensions of “semi-implicit” algorithm are

not designed to deal with Fourier-number stability restrictions4.

Even though this extension is rather simple, we are not aware of anybody using

it. This is perhaps Newton-based fully-implicit algorithms (Chapter 6) are much

4In fact, RELAP5-3D [cdt09] treats viscous diffusion operator explicitely, which is

extremely restrictive for turbulent flows, when Fourier number restrictions (scaled as ∼
Δh2 in contrast to ∼ Δh of CFL) become dominant.
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more efficient and elegant, and recent advances in linear algebra solvers and CPU

memory availability make these algorithms feasible.

5.3 NPHASE Algorithm
NPHASE code was developed in RPI. The code is based on segregated pressure-

based algorithm [AEKP00, Ant11], which appears to be of MCBA type, with PEA

for implicit velocity update Step A. It is stated that the code posseses an enhanced

robustness for the modeling of multi-(N )-fluid configurations. However, since

not a single comprehensive description of the underlying algorithm is available,

with any clear demonstration of the advancement, we would avoid any further

speculation and discussion on the code capabilities.
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Chapter 6

Fully-Implicit, Newton-Based
Algorithms

THE best known algorithms for solving non-linear problems are based on New-

ton iterations. Depending on the chosen implicit time discretization, non-

linear problems must be solved once or several times (in the case of multi-stage

implicit Runge-Kutta algorithms) per time step. Discussion of Newton-based al-

gorithms is organized as following. First, we briefly discuss implicit time dis-

cretizations in Section 6.1, followed by highlights of Newton algorithm in Section

6.2. CATHARE’s Newton-based solver will be outlined in Section 6.3. JFNK-

based algorithm will be presented in Section 6.4, followed by the discussion of

preconditioning techniques.

6.1 Implicit time discretizations
An implicit time discretization of eqs.(2.46)-(2.48) can be written as

U
[k]

= U
[n]

+Δt
k∑

r=1

a
kr
S
(
U

[r]
)
, k = 1, ..., s− 1

U
[n+1]

= αU
[n−1]

+ βU
[n]

+Δt

(
b0S

(
U

[n]
)
+

s∑
r=1

brS
(
U

[r]
)) (6.1)

where s is the total number of implicit Runge-Kutta (IRK) stages, while a
kr

and br

are the stage and the main scheme weights, respectively. Superscripts “[×]” denote

the stages of IRK iteration.
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As in previous discussions, we avoid any specific reference to the details of

space discretization, denoting spatial/source discretization operator by S:

S =

⎡
⎢⎢⎢⎢⎣

−∇ρk
· (α

k
ρ̄

k
ṽ

k
) + S

mass,k

−∇vk
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k
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k
ṽ

k
⊗ ṽ

k
) + α
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∇vk

p̄+ 
S
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−∇ek
· (α

k
ṽ

k
(ρ̄

k
ẽ
k
+ p̄)) + (ṽ

k
p̄)∇e

k
α

k
+ S

ene,k

⎤
⎥⎥⎥⎥⎦ (6.2)

6.1.1 Backward Euler

In the case of α = 0, β = 1, s = 1, b0 = 0 and b1 = 1, eq.(6.1) reduces to the

first-order Backward Euler (BE1) discretization.

6.1.2 BDF

In the case of α = − Δt2

Δtn−1(2Δt+Δtn−1)
, β = Δt

Δtn−1

Δt+Δtn−1

2Δt+Δtn−1
, s = 1, b0 = 0

and b1 = 1, eq.(6.1) reduces to the second-order Backward Difference (BDF2)

discretization.

6.1.3 Crank-Nicholson

In the case of α = 0, β = 1, s = 1, b0 =
1
2

and b1 =
1
2
, eq.(6.1) is the second-order

Crank-Nicholson (CN2) scheme.

6.1.4 ESDIRK

A family of high-order IRK schemes recently developed by Carpenter et al. [BCVK02],

[CKB+05] is particularly useful, since these schemes not only do not amplify any

left-half-plane-(LHP)-scaled eigenvalues (A-stability), but also provide a com-

plete damping of all eigenvalues including those at the limit ||z → ∞|| (L-stability).

These IRK schemes are prescribed by b0 = 0 and the Butcher tableau of the fol-
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lowing form:

0 0 0 0 0 ... 0
c2 a21 γ 0 0 ... 0
c3 a31 a32 γ 0 ... 0
... ...
cs−1 a

(s−1)1
a
(s−1)2

... ... γ 0

1 b1 b2 b3 ... b
(s−1)

γ

b1 b2 b3 ... b
(s−1)

γ

b̂1 b̂2 b̂3 ... b̂
(s−1)

b̂
(s)

(6.3)

where cr denotes the point in time of the rth-stage, t
[n]

+ crΔt. Note that the first

stage is explicit, and the diagonal elements for all stages r > 1 are the same, arr =
γ, which is why this family is called “Explicit, Singly Diagonal Implicit Runge-
Kutta” (ESDIRK) in the literature. Note that the pth-order ESDIRKp schemes

allow to compute (p− 1)th-order solution, as

U
[n+1]

= U
[n]

+Δt
s∑

r=1

b̂rS
(
U

[r]
)

(6.4)

6.2 Newton method
Each stage of IRK requires solution of non-linear system in the form


res
U

(

X
U

)
= 0 (6.5)

or, alternatively


res
U

(

X
V

)
= 0 (6.6)

where


X
U
=
(
U

T

1
, U

T

2
, ..., U

T

Ncells

)T

(6.7)

and


X
V
=
(
V

T

1
, V

T

2
, ..., V

T

Ncells

)T

(6.8)
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are solution vectors of conservative (U) or primitive (V) variables, respectively.

These include all variables in all N
cells

computational cells.

The residual vector 
res
U

for each variable at the cell (c) takes the form:


res
U(c)

(

X
V

)
= U

[rk]

(c)
−U

[n]

c
−Δt

rk∑
r=1

a
rk,r

Sc

(

X [r]

V

)
(6.9)

It is important to note that even though we define residuals 
res
U

in terms of con-
servative variables1 U, one can chose another set of variables for solution (or
primitive) vector V. We already discussed this briefly in Section 2.6 (eq.(2.49)

vs. eqs.(2.50) and (2.51)).

Non-linear system of eqs.(6.5) can be solved with Newton’s method, itera-

tively, as a sequence of linear problems defined by

J
a

U
δ 
X a

U
= − 
res

U

(

X a

U

)
(6.10)

The matrix J
a

U
is the Jacobian of the ath Newton’s iteration and δ 
X a

U
is the update

vector for conservative variables. Each (i,j)th element of the Jacobian matrix is a

partial derivative of the ith equation with respect to the jth variable:

J
Ui,j

≡ ∂ ( 
res
U
)
i

∂
(

X
U

)
j

(6.11)

The linear system eq.(6.10) is solved for δ 
X a

U
, and the new Newton’s iteration

value for 
X
U

is then computed as


X a+1

U
= 
X a

U
+ δ 
X a

U
(6.12)

Newton’s iterations on 
X
U

are continued until the convergence criterion∣∣∣∣∣∣ 
res( 
X a

U

)∣∣∣∣∣∣
2

< tol
N

∣∣∣∣∣∣ 
res( 
X 0

U

)∣∣∣∣∣∣
2

(6.13)

1In fact, this is preferrable, as by doing this one can write conservative-to-roundoff

discrete forms.
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is satisfied, where the nonlinear tolerance tol
N

is a given input parameter (typi-

cally, in the range 10−6 ÷ 10−8).

Conservative variables are not always a good choice for solution vector. For

example, in compressible low-Mach-number or stiff-fluid applications, density is

nearly constant. Thus, small error in density would cause huge error in pressure,

which leads to numerical instabilities. Similarly, total energy is dominated by

internal energy, and kinetic energy is a only small fraction of total energy,

ṽ2

2
� ũ

Therefore, Newton iterations would have hard time to distinct these two and to

converge. In terms of linear algebra, this implies that Jacobian matrix J
U

is stiff.

In this case, it is better to chose another set of unknowns, transforming the Newton

method into the following algorithm:

A. Start Newton iteration. Initial guess for 
X
a

V
.

B. Solve linear problem:

J
a

U

∂U

∂V︸ ︷︷ ︸
J
a

V
( �Xa

V
)

δ 
X a

V
= − 
res

U

(

X a

V

)
(6.14)

using direct or iterative method,

δ 
X a

V
= − (Ja

V

)−1

res

U

C. Update:


X a+1

V
= 
X a

V
+ δ 
X a

V
(6.15)

D. Check convergence:

a. If ∣∣∣∣∣∣ 
res( 
X a

V

)∣∣∣∣∣∣
2

< tol
N

∣∣∣∣∣∣ 
res( 
X 0

V

)∣∣∣∣∣∣
2

(6.16)

Finished, go to Step (E).
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b. Else, reset 
X a

V
= 
X a+1

V
and repeat starting from Step (B).

E. DONE.

Remarks

1. The choise of primitive (solution) variables should lead to well conditioned

Jacobian matrix, J
a

V
. For two-fluid model, there are different options. RELAP5-

3D [cdt09] uses:

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

p̄
α
ṽ0

ṽ1

ũ0

ũ1

⎤
⎥⎥⎥⎥⎥⎥⎦ (6.17)

Another choice was used in the JFNK-based algorithm [NBDY11, NDY10,

YNK+11] (see Section 6.4):

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p̄
α

v
mix

≡ αρ̄0 ṽ0+(1−α)ρ̄1 ṽ1

αρ̄0+(1−α)ρ̄1

ṽ0

ũ0

ũ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6.18)

There are other possible choices, but the general quidelines are to chose

pressure and void fraction instead of phasic densities, and specific internal

energies (or enthalpies) instead of total energies.

2. One of the nice features of using p̄ and α in the solution vector is that non-

linear algorithm defined by eq.(3.8) is avoided.

3. Non-linear iterations typically converge rapidly, within 3-10 iterations, which

is in contrast to Picard-based iterations of segregated algorithms in Chapter

5 – it might take hundreds of outer iterations to reach an acceptable toler-

ance.
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4. Care must be exercised in discretization of residuals eq.(6.9), to prevent

“clicking” of Newton iterations, by removing/smoothing any possible dis-

continuities in evaluation of spatial discontinuities (limiters), fluxes (Rie-

mann solvers) and closure laws (flow regime maps and transitions).

5. Linear problem eq.(6.14) is the most difficult and expensive part of the algo-

rithm. In general, Jacobian matrix is non-symmetric, leading to rather lim-

ited choice for iterative solvers. They are all typically of Krylov-iteration

based algorithm family, Section 6.4.1.

6. One of the nice features of the Jacobian-free version of linear solver (Sec-

tion 6.4.2) is simplicity in code modification. This is particularly impor-

tant when new closure laws are implemented, or when different options for

space discretization and flux evaluation are employed. Also, no special ef-

fort is necessary when solution vector is based on V instead of U (no need

for evaluation of ∂U
∂V

), as the Jacobian matrix J
a

V
is computed directly by

perturbing V (see Section 6.4.2).

7. Preconditioning of linear solver is the major factor in defining efficiency

of Newton-based fully-implicit algorithms. CATHARE-1D utilizes ILU

(math-based) preconditioners, which are known to have poor scalability

properties, especially when applied in 3D. This is why only 1D module

of CATHARE is Newton-based. Utilizing physics-based preconditioning

[KK04], based on operator-spliting or segregated algorithms (Chapters 4

and 5) offers a potentially powerful and scalable solution for three-dimen-

sional effective-field solvers.

6.3 CATHARE Algorithm

CATHARE’s one-dimensional module utilizes the 1st-order backward Euler fully-

implicit Newton-based algorithm2 [BPB93]. All flux and source terms are com-

2In three-dimentional module, fully-implicit Newton-based method was considered

too much time consuming, due to large matrix inversions needed. We believe this is

mainly due to non-JFNK (computations of Jacobian are expensive) and poor ILU-(math)-

based preconditioning. JFNK with physics-based preconditioning is expected to perform

much better.
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puted at (n+ 1) time level:

Mass, k=0,1:

res
mass,k

= (α
k
ρ̄

k
)n+1 − (α

k
ρ̄

k
)n −Δt

(
∇ρk

· (α
k
ρ̄

k
ṽ

k
)n+1 − 
Sn+1

mass,k

)(6.19)

Momentum, k=0,1:

res
mom,k

= (α
k
ρ̄

k
ṽ

k
)n+1 − (α

k
ρ̄

k
ṽ

k
)n −

−Δt
[
∇vk

· (α
k
ρ̄

k
ṽ

k
⊗ ṽ

k
)n+1 − (α

k
∇vk

p̄
)n+1 − Sn+1

mom,k

] (6.20)

Total energy, k=0,1:

res
ene,k

= (α
k
ρ̄

k
ẽ
k
)n+1 − (α

k
ρ̄

k
ẽ
k
)n −

−Δt

(
∇ek

· (ṽ
k
α

k
(ρ̄

k
ẽ
k
+ p̄))n+1 −

(
p̄ṽ

k
· ∇e

k
α

k

)n+1

− 
Sn+1
ene,k

) (6.21)

The Jacobian matrix

J =
∂ 
res

∂ 
X
is computed analytically (no numerical derivatives are used), at each Newton it-

eration. Linear problems are solved using conjugate gradient method, with ILU-

based “mathematics-based” preconditioning.

6.4 Fully-compressible, Fully-implicit, JFNK-based
Jacobian-Free Newton-Krylov (JFNK) based algorithms offer a better platform

for solving effective-field models. The major ingredients of JFNK are

• (Inexact) Newton method (Sections 6.2 and 6.4.3) for eq.(6.8), combined

with

• Jacobian-free versions of Krylov solvers for linear problem eq.(6.14) (e.g.,

GMRES, Section 6.4.1), and

• Physics-based preconditioning [KK04, KR00, KCMM03, KMCR05] (Sec-

tion 6.5.2).



112 CHAPTER 6. NEWTON-BASED ALGORITHMS

6.4.1 Krylov subspace iterations (GMRES)
One of the most popular linear solver used in JFNK is the Arnoldi-based Gen-
eralized Minimal RESidual method (GMRES) [SS86]. It belongs to the general

class of Krylov subspace iteration methods. These projection (Galerkin) or gen-

eralized projection (Petrov-Galerkin) methods [Saa03] are suitable for solving

non-symmetric linear systems of the form eq.(6.10) or eq.(6.14), using Krylov

subspace, K
j
,

K
j
= span

(

r0 , J
r0 , J

2


r0 , ..., J
j−1


r0

)
(6.22)

where 
r0 = J
a
δ 
X a

0
+ 
res

(

X a
)

. In GMRES, the Arnoldi basis vectors form a trial

subspace out of which the mth-iteration solution is constructed:

δ 
X a

m
= δ 
X a

0
+ k0
r0 + k1J
r0 + k2J

2


r0 + ...+ kmJ
m


r0 (6.23)

where (k0 , k1 , ..., km) are “coordinates” of the mth trial solution in the Krylov sub-

space. As one can see, only matrix-vector products are required to create new trial

vectors. The iterations are terminated based on a by-product (free) estimate of the

residual that does not require explicit construction of intermediate residual vec-

tors. This is a major advantage of GMRES over other Krylov methods. GMRES

has a residual minimization property in the Euclidean norm. The major draw-

back of GMRES is that it requires the storage of all previous Arnoldi/(Krylov)

basis vectors. This problem can be alleviated with efficient preconditioning (see

section 6.5).

6.4.2 Jacobian-free implementation
Since GMRES does not require individual elements of the Jacobian matrix J, it

never needs to be constructed. Instead only matrix-vector multiplications J
κ are

needed, where 
κ ∈ (
r0, J
r0 , J
2
r0 , ...) are Krylov vectors. Thus, Jacobian-free

implementations are possible. The action of the Jacobian matrix can be approxi-

mated by Fréchet derivatives

J
κ ≈

res
(

X + ε
κ

)
− 
res

(

X
)

ε
(6.24)

There are two approaches for choosing ε.
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Brown & Saad. The first approach is taken from [BS90]:

ε =

⎧⎨
⎩

ε
rel

�XT
�κ

||�κ||2
2

if
∣∣∣ 
X ′


κ
∣∣∣ > X

min
||
κ||

1

ε
rel
X

min
Sign

(

X T


κ
) ||�κ||

1

||�κ||2
2

otherwise
(6.25)

There are two control parameters: ε
rel

and X
min

.

Pernice & Walker. The second approach is taken from [PW98]:

ε =

ε
rel

√
1 +
∣∣∣∣∣∣ 
X ∣∣∣∣∣∣

||
κ|| (6.26)

The only control parameter is ε
rel

. Note that for the entire linear iterative

process 
X does not change. Therefore,

√
1 +
∣∣∣∣∣∣ 
X ∣∣∣∣∣∣ need be computed only

once.

With the Jacobian-free formulation, the work associated with forming the Ja-

cobian matrix and its storage can be eliminated, which is a significant saving of

both CPU time and storage, provided that the number of Krylov vectors is kept

small (see section 6.5). Moreover, in many non-linear applications, the Jacobian

matrix is not available due to size and complexity.

6.4.3 Inexact Newton

One important modification to Newton’s method employed in JFNK is called an

inexact Newton’s method [KK04]. The term “inexact” refers to the accuracy of

the iterative linear solver. The basic idea is that the linear system must be solved

to a tight tolerance only when the added accuracy matters – i.e., when it affects

the convergence of the Newton’s iterations. This is accomplished by making the

convergence of the linear residual proportional to the non-linear residual:∣∣∣∣∣∣Ja

δ 
X a

m + 
res
(

X a
)∣∣∣∣∣∣ ≤ νa

∣∣∣∣∣∣ 
res( 
X a
)∣∣∣∣∣∣ (6.27)

By default, νa is a constant. Alternatively, one can invoke the algorithm by Eisen-

stat and Walker [EW96], which computes νa at each step of the nonlinear solver.
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6.5 Preconditioning
Let us consider a solution of the linear problem eq.(6.14), using Krylov subspace

iterations. If the problem is stiff, the Jacobian matrix J
a

V
is ill-conditioned, which

implies that a significant number Krylov subspace dimensions must be introduced

to reach a converged solution. This is the major drawback of Krylov method:

forming additional dimensions not only CPU-consuming, but also extremely de-

manding in memory, as each added nth Krylov vector kn is of the size of the

solution vector 
X .

In practice, unpreconditioned Krylov methods are seldomly used. To im-

prove performance, Krylov methods must be preconditioned [SS86] to effec-

tively cluster eigenvalues of the iteration matrix. Here, we will consider right
preconditioning techniques3, as these are best suited for physics-based precondi-

tioning discussed in Section 6.5.2.

Consider the following modification of eq.(6.14):

J
a

V
P
−1︸ ︷︷ ︸

J
a

P

Pδ 
X a

V︸ ︷︷ ︸
δ �Y

= − 
res
U

(

X a

V

)
︸ ︷︷ ︸

�b

(6.28)

where P symbolically represents the preconditioning matrix (or process), and P−1

is its inverse. Thus, the solution procedure is splitted into two processes:

1. Solving for

J
a

P
δ 
Y = 
b (6.29)

(this is what actually crunched by GMRES), and

2. Preconditioning:

δ 
X a

V
= P

−1δ 
Y (6.30)

While one refers to the matrix/process P, operationally the algorithm only re-

quires the action of P−1 on a vector. The main requirement is that P designed prop-

erly, to enable clustering eigenvalues of the J
a

P
, making the solution of eq.(6.29)

to converge faster.

3Left preconditioning changes the norm of the residual by which convergence to a

linear iterative method is generally measured, [KK04, SS86].
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6.5.1 Matrix-based preconditioning

If the Jacobian matrix J
a

V
is given (say, computed analytically as in the CATHARE-

1D, or being evaluated by applying Fréchet derivatives eq.(6.24) on a sequence of

unit vectors4), then a number of well-established matrix-based preconditioning
techniques are availabled. These include different flavors of SOR, SSOR, ILU,

MILU, ILUT, ILUTP, ILUS, ILUC, etc. preconditioners, see [SS86] for review.

In these cases, the preconditioning matrix P is a suitable approximation for J
a

V
.

Computation of the Jacobian matrix however is extremely expensive (both

CPU- and memory-wise). Moreover, most of the matrix-based preconditioning

techniques tend to scale poorly with increase of the number of unknowns, espe-

cially for 3D applications. Therefore, it is generally agreed that the use of the

Newton-Krylov (NK) method prohibitively expensive for 3D reactor simulations

[BPB93].

6.5.2 Physics-(process)-based preconditioning (PBP)

The main premise for the Jacobian-free Newton Krylov (JFNK) method is that

the computation of the Jacobian matrix is completely avoided. In this case, the

solution of the equation (6.29) is obtained by the Jacobian-free version of GM-

RES (Section 6.4.2), while the action of preconditioning
(
P−1δ 
Y

)
is a process,

possibly formed as a linear combination of approximate inverses of submatrices

[KK04]. We refer to this approach as physics-based preconditioning, because

typically one would like to use available and well-tested (as a solver) operator-

splitting algorithms to represent
(
P−1δ 
Y

)
. In the context of the present discus-

sion, these could any of the described algorithms from Chapters 4 and 5.

Advantages of the PBP are discussed and demonstrated in [KK04, KR00,

KCMM03, KMK96, KMCR05] , for a range of applications, starting from time-

dependent diffusion equations, MHD equations, steady-state Navier-Stokes equa-

tions, shallow-water equations, etc. If the preconditioning process is designed

well, one could solve linear problem faster then computation time needed for

4PETSc [BBE+04] provides very nice and efficient MatFDColoring routines for

finite-difference Jacobian approximations.
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Jacobian evaluations5. Moreover, when combined with efficient multigrid al-

gorithms utilized in the physics-based proconditioning process (designed to ex-

tract dominantly elliptic component of the problem, when appropriate6), one can

achieve very scalable algorithms, which would make 3D reactor simulations cost-

effective.

There are a number of available tools for implementing JFNK with matrix-

amd process-based precondition. An example of pseudo code for PETSc’s SNES

package is given in Appendix B.

5Special care must be exersized to ensure that discrete forms of equations in the pre-

conditioning process are consistent with discrete forms of the original linear problem.
6For example, when solving relatively low-speed or slow two-phase flow problems.
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Chapter 7

Phase appearance and
disappearance

PHASE appearance and disappearance presents very serious numerical chal-

lenge for all effective field models. To our knowledge, no fully satisfactory

solutions exist. There are several ad hoc numerical treatments used in different

codes. We will discuss these fixes next.

7.1 CATHARE strategy

CATHARE strategy for dealing with phase appearance/disappearance described

by Bestion in [Bes00]. The main idea is keep void fraction bounded in the range

[α
min

, αmax ] by manipulating wall and interfacial exhange terms for phasic mass,

momentum and energy equations, combined with time step control. Another driv-

ing consideration is to force the disappearing phase to stay thermally at/near the

saturation state, and, mechanically, at equalibrium with carrying/dominant phase.

More specifically, for two-fluid formulation,

T̃
(d)

→ T̃sat

ṽ
(d)

→ ṽ
(c)

(7.1)

where (d) denotes disappearing phase, while (c) stands for “carrying” phase. Thus,

the phasic governing conservation equations are solved even when the phase es-

sentially non-existent, α
d
≈ α

min
, avoiding any void fraction cut-off procedures,

which are undesirable not only from the point of view conservation, but also be-

118
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cause they have adverse effects on convergence of iterative procedures.

Interfacial exchange terms appear in source terms of eqs.(2.46), (2.47) and

(2.48), as

S
mass,k

→ Γ

S
mom,k

→ Γv
m

ki

S
ene,k

→ Γ

(
u

ki
+

(ve
ki
)
2

2

) (7.2)

(see also eqs.(2.3), (2.4) and (2.5) of Chapter 2), where Γ, v
m

ki
, u

ki
and ve

ki
are

modeling (closure) parameters. From the current discussion perspective, interfa-

cial mass exchange terms are of importance. They are modeled as

Γ =
q
w,i

− q
i,v

− q
i,l

H
vl

(7.3)

where H
vl

is the latent heat of evaporation/condensation phase change, while the

interfacial and wall heat fluxes are given by

q
w,i

= h
w,i

(Tw − Tsat)

q
i,v

= a
i
h

i,v

(
Tsat − T̃v

)
q
i,l

= a
i
h

i,l

(
Tsat − T̃

l

) (7.4)

Tw , Tsat , T̃v and T̃
l

are wall, saturation, vapor and liquid averaged temperatures,

correspondingly. Wall-to-, vapor-to- and liquid-to-interface heat transfer coeffi-

cients are defined by h
w,i

, h
i,v

and h
i,l

, respectively. Interfacial area density is

given by a
i
.

7.1.1 Void fraction bounding and thermal conditioning
The necessary (but not sufficient) conditions to keep α

k
∈ [0, 1] are:

1. No condensation when there is no vapour: αv = 0⇒ Γ ≥ 0. From eq.(7.3),

the necessary limiting conditions on interfacial heat transfer coefficients are:⎧⎪⎪⎨
⎪⎪⎩

q
i,l
≤ 0 ⇒ if

(
T̃

l
< Tsat

)
⇒ a

i
h

i,l
= 0

q
i,v

≤ 0 ⇒ if
(
T̃v < Tsat

)
⇒ a

i
h

i,v
= 0

q
w,i

≥ 0 ⇒ if (Tw < Tsat) ⇒ h
w,i

= 0

⎫⎪⎪⎬
⎪⎪⎭ (7.5)
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2. No evaporization when there is no liquid: α
l
= 0 ⇒ Γ ≤ 0. From eq.(7.3),

the necessary limiting conditions on interfacial heat transfer coefficients are:⎧⎪⎪⎨
⎪⎪⎩

q
i,l
≥ 0 ⇒ if

(
T̃

l
> Tsat

)
⇒ a

i
h

i,l
= 0

q
i,v

≥ 0 ⇒ if
(
T̃v > Tsat

)
⇒ a

i
h

i,v
= 0

q
w,i

≤ 0 ⇒ if (Tw > Tsat) ⇒ h
w,i

= 0

⎫⎪⎪⎬
⎪⎪⎭ (7.6)

These limiting conditions are necessary, but not sufficient. To enforce α
k
∈

[α
min

, αmax ]
1, additional “residual phase treatments” are introduced as follows.

Bounding at αv ≈ 0 (single-phase liquid)

When αv → 0, the following conditioning on interfacial heat fluxes is enforced:

• q
i,v

must force T̃v to be close to Tsat (this is thermal conditioning). Thus,

[0 < αv ≤ α
min

] or
[
α+

min
← αv

] ⇒ a
i
h

i,v

 0 (7.7)

• qw,v must not heat residual vapor when Tw > T̃v . Thus,

[0 < αv ≤ α
min

] ⇒ qw,v = 0

[
α+

min
← αv

] ⇒ qw,v → 0

(7.8)

• q
w,i

and q
i,l

must not condense residual vapour:

[0 < αv ≤ α
min

] ⇒
{

q
i,l
≤ 0

q
w,i

≥ 0

[
α+

min
← αv

]
T̃

l
< Tsat

⇒ q
i,l
→ 0−

(7.9)

1In CATHARE, αmin = 10−5 and αmax =
(
1− 10−6

)
= 0.99999.
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These conditions should render interfacial mass transfer Γ positive or small-

negative2. When small-negative, some small condensation of the residual vapour

occur. The following numerical residual mass transfer is added to attract αv ≈
α

min
:

Γ =
q
w,i

− q
i,v

− q
i,l

H
vl

+ ρ̄v

α
min

− αv

τv︸ ︷︷ ︸
Γres

(7.10)

where τv = 10−5.

Bounding at α
l
≈ 0 (single-phase vapour)

When α
l
→ 0, the following conditioning on interfacial heat fluxes is enforced:

• q
i,l

must force T̃
l

to be close to Tsat (this is thermal conditioning). Thus,

[0 < α
l
≤ (1− αmax)] or

[
(1− αmax)

+ ← α
l

] ⇒ a
i
h

i,l

 0 (7.11)

• q
w,l

must not heat residual liquid when Tw > T̃
l
. Thus,

[0 < α
l
≤ (1− αmax)] ⇒ q

w,l
= 0

[
(1− αmax)

+ ← α
l

] ⇒ q
w,l

→ 0

(7.12)

• q
w,i

and q
i,l

must not condense residual liquid:

[0 < α
l
≤ (1− αmax)] ⇒

{
q
i,l
≥ 0

q
w,i

≤ 0

[
(1− αmax)

+ ← α
l

]
T̃

l
> Tsat

⇒ q
i,l
→ 0+

(7.13)

2It can be negative when q
i,l

= 0 and qi,v > 0.
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These conditions should render interfacial mass transfer Γ negative or small-

positive3. When small-positive, small evaporation of the residual liquid occur.

To prevent this, the following numerical residual mass transfer is added to attract

α
l
≈ (1− αmax):

Γ =
q
w,i

− q
i,v

− q
i,l

H
vl

+ ρ̄
l

1− αmax − α
l

τ
l︸ ︷︷ ︸

Γres

(7.14)

where τ
l
= 10−5.

In addition to the above-conditioning, CATHARE adds time step control, pre-

venting large time steps which can overshoot and make out-of-bounds solutions.

7.1.2 Velocity conditioning

To enforce velocity-equilibrium at the limit of vanishing phase, the following nu-

merical conditioning is applied on interfacial and wall friction:

• When αv → α+
min

and 0 < αv ≤ α
min

, or when α
l
→ (1− αmax)

+
and

0 < α
l
≤ (1− αmax), interfacial friction is set to very high value.

• When αv → α+
min

and 0 < αv ≤ α
min

, wall friction is set to very small

value.

7.1.3 Discussion

1. The physical arguments behind the above-discussed conditionings are mean-

ingful only for boiling/condensing dispersed two-phase flows in reactor

thermalhydraulics:

(a) When vapour bubbles appear/disappear in bulk flow during direct con-

tact condensation, their radius is small and interfacial drag is very

high, making their velocity to be very close to the velocity of the car-

rying liquid. Also, it is reasonable to assume that bubbles formed at

3It can be negative when qi,v = 0 and q
i,l

< 0.
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saturation temperature4.

(b) Similarly, when liquid droplets appear/disappear under bulk conden-

sation during depressurization, or bulk evaporization during reflood-

ing, the interfacial drag is large due to small drop radia, making the

equilibrated phasic velocities assumption meaningful. Also, it is rea-

sonable to assume that droplets generated/collapsed at saturation tem-
perature5.

2. The physical arguments for CATHARE velocity conditioning are breaking
down for [Bes00]:

(a) Forming the first vapour bubbles at the wall (the bubbles tend to stay

or slide at the wall).

(b) Forming the first vapour bubbles during flashing process with hetero-
geneous nucleation along the walls, which is more likely to occur than

bulk homogeneous nucleation.

(c) Liquid film dryout by wall-heating.

(d) Film condensation by wall cooling.

3. Because of the Newton-based iterative procedures used in the CATHARE,

the above-discussed conditionings must be implemented smoothly, to pre-

vent “clicking” of Newton iterations.

7.2 Paillère at al. treatment
In [PCGC03], Paillére et al. utilized a variation of the AUSM scheme [Lio06,

CL07] to solve 4- and 6-equation two-fluid models. Recognizing importance of

phase appearance and disappearance, they introduced very simple treatment of the

disappearing phase. Similar to CATHARE, it is assumed that the “residual” (or

4In practice, the pressure inside bubbles is higher due to surface tension, so that they

can appear only with certain liquid overheating. This effect can be accounted for by either

including bulk pressure difference term (see eq.(2.47)), or by modeling a flashing delay in

the evaporization law.
5Accounting for surface tension-caused droplet over-pressure by including bulk pres-

sure difference term of eq.(2.47) should incorporate the realistic physical effects of having

the necessary overcooled-vapour conditions.



124 CHAPTER 7. PHASE APPEARANCE AND DISAPPEARANCE

“vanishing”) phase have the same velocity as the “carrying” phase. However, no

attempt is made to enforce this condition through the interfacial exchange terms.

Instead, when the velocity of the “residual” phase is required (e.g., when comput-

ing AUSM-based fluxes), it is computed using the following simple formula:

ṽ
(d)

= G
(
α

(d)

) (α
(d)
ρ̄

(d)
ṽ
(d)

)
(
α

(d)
ρ̄

(d)

) +
(
1−G

(
α

(d)

)) (α
(c)
ρ̄

(c)
ṽ
(c)

)
(
α

(c)
ρ̄

(c)

) (7.15)

where
(
α

(k)
ρ̄

(k)

)
and
(
α

(k)
ρ̄

(k)
ṽ
(k)

)
are the solutions of the phasic mass and mo-

mentum equations. Positive function G
(
α

(d)

)
is introduced to provide a smooth

transition (it becomes 1 when α
(d)

≥ α
min

). The value α
min

= 10−4 was used in

[PCGC03].

Similar consideration is applied for temperature of the “residual” phase – it is

assumed to be equal to the one of the “carrying” fluid, at the limit α
(d)

→ 0, by

applying an equation similar to eq.(7.15).

Importantly, no cut-off is actually applied to the void fraction itself.

Essentially the same treatment of the vanishing phase is used by Chang and

Liou [CL07]:

Ψ
adjust

= G (ξ)Ψ
(d)

+ (1−G (ξ))Ψ
(c)
, Ψ = ṽ, T̃ (7.16)

where

G (ξ) = −ξ2 (2ξ − 3) , ξ =
α

(d)
− ε

min

εmax − ε
min

(7.17)

where ε
min

is set to 10−7, while εmax is in the range from 10−3 to 10−6.

Discussion

1. The above treatment is reasonable for no-phase-change (boiling flows) con-

figurations.

2. This treatment is applied when explicit algorithms for solving two-fluid

equations, Chapter 3.
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Chapter 8

Concluding Remarks

A number of algorithms developed in the past 40 years for numerical solution of

averaged multi-phase flow equations have beed reviewed. While many of these

(operator-splitting-based) algorithms have proven in time to be suitable for ap-

plication in reactor thermalhydraulics codes, the fully-implicit algorithms are the

future, as the strong non-linearity and complexity of governing equations and con-

stitutive physics imposes serious challenge, which can be overcome with tight

coupling and removing stability constraints. The major challenge in implement-

ing the fully-implicit algorithms is the efficiency and robustness. While segregated

SIMPLE-based algorithms are the base for all current commercial CFD codes,

these are known to have robustness and numerical convergence issues due to Pi-

card iterations employed to solve non-linearly coupled equations. On the other

hand, while Newton-based algorithms are attractive from the point of view of

their robustness and mathematical properties, they are quite expensive from the

point of view of memory requirement and difficulties to precondition. We be-

lieve that the future is in the combination of operator-splitting, segregated and

Newton-based algorithms, where some form of inexact Newton method should be

used for guiding non-linear iterations, with matrix-free form of Krylov (GMRES)

subspace iterations used for linear steps, and operator-splitting (“semi-implicit”,

SETS, Nearly-Implicit) and simplified versions of segregated algorithms utilized

as physics-based precondition techniques. This approach is chosen to be imple-

mented in Hydra-TH.
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Appendix A

Cartesian Vector Calculus

Given two Cartesian vectors a =
{
ax , ay , az

}T

and b =
{
bx , by , bz

}T

, the dot
product is defined as

a · b = axbx + ayby + azbz = a
k
b
k

(A.1)

The dyadic product is denoted as [Ari]

ab = a⊗ b =

⎡
⎣ axbx axby axbz

aybx ayby aybz
azbx azby azbz

⎤
⎦ = a

k
b
l

(A.2)

Spatial derivatives are denoted as

∇ =

{
∂

∂x
,
∂

∂y
,
∂

∂z

}T

=
{
∂x , ∂y , ∂z

}T

= ∂
j

(A.3)

Thus, the gradient of an arbitrary scalar ϕ is defined as

∇ϕ =

{
∂ϕ

∂x
,
∂ϕ

∂y
,
∂ϕ

∂z

}T

=
{
∂xϕ, ∂yϕ, ∂zϕ

}T

= ∂
j
ϕ (A.4)

and, accordingly, dot product of a vector and a gradient of a scalar is

a · ∇ϕ = ax

∂ϕ

∂x
+ ay

∂ϕ

∂y
+ az

∂ϕ

∂z
(A.5)

Laplacian of an arbitrary scalar is defined as

∇ · ∇ϕ = ∇2

ϕ = Δϕ =
∂

2
ϕ

∂x2 +
∂

2
ϕ

∂y2 +
∂

2
ϕ

∂z2 = ∂
2

k
ϕ (A.6)
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Divergence of a vector is defined as

∇ · a =
∂ax

∂x
+

∂ay

∂y
+

∂az

∂z
(A.7)

Gradient of an arbitrary vector is a tensor, defined as

∇a =

⎡
⎢⎢⎢⎢⎢⎣

∂ax
∂x

∂ax
∂y

∂ax
∂z

∂ay
∂x

∂ay
∂y

∂ay
∂z

∂az
∂x

∂az
∂y

∂az
∂z

⎤
⎥⎥⎥⎥⎥⎦ (A.8)

and its transpose:

∇a
T

=

⎡
⎢⎢⎢⎢⎢⎣

∂ax
∂x

∂ay
∂x

∂ay
∂x

∂ax
∂y

∂ay
∂y

∂ay
∂y

∂ax
∂z

∂ay
∂z

∂ay
∂z

⎤
⎥⎥⎥⎥⎥⎦ (A.9)

Scalar product of a vector and divergence of a vector is a vector:

a · ∇b =

⎧⎨
⎩

ax · ∇bx
ay · ∇by
az · ∇bz

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ax

∂bx
∂x

+ ay

∂bx
∂y

+ az

∂bx
∂z

ax

∂by
∂x

+ ay

∂by
∂y

+ az

∂by
∂z

ax

∂bz
∂x

+ ay

∂bz
∂y

+ az

∂bz
∂z

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.10)

Divergence of a dyadic product of two vectors is defined as

∇ · (ab) = ∇ · (a⊗ b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂
∂x

(axbx) +
∂
∂y

(
axby

)
+ ∂

∂z
(axbz)

∂
∂x

(
aybx

)
+ ∂

∂y

(
ayby
)
+ ∂

∂z

(
aybz
)

∂
∂x

(azbx) +
∂
∂y

(
azby
)
+ ∂

∂z
(azbz)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A.11)



Appendix B

SNES JFNK-PBP pseudo-code
example

IN the present chapter, we provide a blue-print/recipe for C/C++ implementation

of the JFNK with physics-based preconditioning, using ANL’s PETSC SNES

and KSP package. We presume that some preliminary knowledge of PETSc pro-

gramming, such as vector/matrix initiation and assembly, distrubuting parallel

data, etc. More detail information and comprehensive introduction to PETSc can

be found in [BBE+04, BBG+01]. We base our discussion on Release Version 3.3.

The actual pseudo-code lines are given in boxes, with comments and remarks in

between.

At the code initiation stage, the SNES library of PETSC must be instantiated

as:

SNES snes;

CHKERRQ(SNESCreate(PETSC COMM WORLD,& snes));

The pointer to snes must be made available for all relevant solution routines.

There are five steps needed for implementation of the SNES-based JFNK-PBP:

1. Configure SNES and KSP: set all needed options, connect user-supplied

Form Function(), Precond SetUp() and PBP precondition() rou-

tines. These are discussed in Sections B.1.1 and B.1.2.

2. Execution step, Section B.2. Called within time update loop, each time

solution to non-linear problem is needed.
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3. Implement residual evaluation Form Function() routine, Section B.3. It

is called by PETSC each time residual evalution is required.

4. Implement preconditioning setup Precond SetUp() routine, Section B.4.

It is called by PETSC at the begining of each Newton iteration.

5. Implement process/physics-based preconditioning PBP precondition()

routine, Section B.5. Called by PETSC at each Krylov iteration.

B.1 Configuration
Define and connect residual evaluation function Form Function() as

CHKERRQ(SNESSetFunction( snes,ResV,Form Function,(void *)ctx class));

where:

(Vec ResV) is an appropriately initiated/allocated residual vector (see [BBE+04]

for PETSc data structure definition),

(PetscErrorCode Form Function(SNES,Vec,Vec,void*)) is residual func-

tion evaluation routine (see Section B.3), and

(ctx class) is a user-provided class to enable connection with C++ classes (if

necessary).

B.1.1 Configure SNES
First, the line search Newton method is defined by

CHKERRQ(PetscOptionsSetValue("-snes type","ls"));

CHKERRQ(PetscOptionsSetValue("-snes ls","basic"));

The other line search options are "cubic", "quadratic" and "basicnorm"

(see [BBE+04] for details).

Non-linear iteration tolerances are set as

CHKERRQ(SNESSetTolerances( snes, atol, rtol, stol, MAXIT NEWTON, max funcs));
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where MAXIT NEWTON is the maximum allowable number of nonlinear iterations

and max funcs is the maximum allowable number of function evaluations. Non-

linear iterations are declared converged when:

• The norm of the change in the solution between successive iterations is less

than stol (by default, set to 10−50).

• Absolute size of the norm is less than atol (say, 10−13).

• Relative (to initial guess) size of the norm is less than rtol (say, 10−8).

Next, define the matrix-free method to be used for (Jacobian×vector) product

evaluation,

CHKERRQ(PetscOptionsSetValue("-snes mf",""));

CHKERRQ(PetscOptionsSetValue("-snes mf type","default"));

This will make PETSC to use Fréchet derivative evaluation eq.(6.24) with

pertubation computed with eq.(6.25). To use eq.(6.26), set option "wp" in place

of "default". The following option will make use of the Eisenstat and Walker

[EW96] algorithm to compute νa for eq.(6.27):

CHKERRQ(PetscOptionsSetValue("-snes ksp ew conv",""));

Two control parameters of matrix-free perturbation by eq.(6.25) – ε
rel

and

X
min

, are set by

CHKERRQ(PetscOptionsSetValue("-snes mf err","1.E-8"));

CHKERRQ(PetscOptionsSetValue("-snes mf umin","1.E-6"));

The next stage is to set and configure linear solver (KSP). This is described in

Section B.1.2.

B.1.2 Configure KSP

After SNES options are specified, one must define KSP linear solver and its pre-

conditioner.
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KSP ksp;

PC pc;

CHKERRQ(SNESGetKSP( snes,&ksp));

CHKERRQ(KSPSetPCSide(ksp,PC RIGHT));

CHKERRQ(KSPGetPC(&ksp,pc));

This will extract pointers to linear solver and preconditioner, and sets KSP to

be right-preconditioned (see eq.(6.28)). Next, specify restarted modified-Gram-

Schmidt GMRES as a type of linear solver:

CHKERRQ(KSPSetType(ksp,KSPGMRES));

CHKERRQ(KSPGMRESSetRestart(ksp, maxGMRES itR));

CHKERRQ(PetscOptionsSetValue("-ksp gmres modifiedgramschmidt",""));

CHKERRQ(KSPGMRESSetCGSRefinementType(&ksp,KSP GMRES CGS REFINE NEVER));

where maxGMRES itR is the maximum GMRES iterations before restarting. Tol-

erance of KSP is specified as

CHKERRQ(KSPSetTolerances(ksp, ksp rtol, ksp abstol, ksp dtol, ksp max its));

Linear solver convergence (or disconvergence) is based on L2-norm of the

linear residual vector, 
r =
(

b− J

a

P
δ 
Y
)

(see also eq.(6.29)), and it is defined by

three quantities:

• The decrease of the linear residual norm relative to the norm of the non-

linear residual,
b, and

• the absolute size of the linear residual norm. Thus, convergence is declared

at iteration k if

||
r
k
||2 < max

(
ksp rtol ·

∣∣∣∣∣∣
b∣∣∣∣∣∣
2
, ksp atol

)
(B.1)

• Divergence is detected if

||
r
k
||2 > ksp dtol ·

∣∣∣∣∣∣
b∣∣∣∣∣∣
2

(B.2)

Default values are ksp atol=10−50, ksp rtol=10−5, ksp dtol=105.



136 APPENDIX B. SNES JFNK-PBP PSEUDO-CODE EXAMPLE

As a final KSP configuration step, set the routines for physics/process-based

preconditioning:

CHKERRQ(PCSetType(pc,PCSHELL));

CHKERRQ(PCShellSetContext(pc,(void *)ctx class));

CHKERRQ(PCShellSetSetUp(pc,Precond SetUp)); CHKERRQ(PCShellSetApply(pc,PBP -

precondition));

where:

(ctx class) is a user-provided class to enable connection with C++ classes (if

necessary).

(PetscErrorCode Precond SetUp(PC)) is a preconditioning setup routine

(see Section B.4), and

(PetscErrorCode PBP precondition(PC, Vec, Vec)) is a physics-based

preconditioning routine (see Section B.5).

Finally, activate all above-defined options with

CHKERRQ(SNESSetFromOptions( snes));

B.2 Execution stage
SNES execution is invoked in the driver for time update loop. Typically, it is called

at each Runge-Kutta step, when a solution of the non-linear set of equations is re-

quired.

First, one must set convergence history for both linear and non-linear solvers,

as

KSP ksp; CHKERRQ(SNESGetKSP( snes,&ksp));
PetscReal *Khist=NULL,*Shist=NULL;
PetscInt *Shistit=NULL, Shistl= HisLx size, Khistl= ksp his store;
CHKERRQ(PetscMalloc( ksp his store*sizeof(PetscReal),&Khist));
CHKERRQ(PetscMalloc(Shistl*sizeof(PetscReal),&Shist));
CHKERRQ(PetscMalloc(Shistl*sizeof(PetscInt), &Shistit));

CHKERRQ(KSPSetResidualHistory(ksp,Khist,Khistl,PETSC FALSE));

CHKERRQ(SNESSetConvergenceHistory( snes,Shist,Shistit,Shistl,PETSC FALSE));
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Next, SNES is executed by calling:

CHKERRQ(SNESSolve( snes,PETSC NULL,X));

where (Vec X) is a properly initiated solution vector. On the input, it must be set

to hold an inital guess. On the output, it will hold a solution to non-linear problem

(provided the solution procedure is properly converged).

To get convergence history, execute:

int NofLinearIt; CHKERRQ(SNESGetLinearSolveIterations( snes,&NofLinearIt));

CHKERRQ(KSPGetResidualHistory(ksp,PETSC NULL,&Khistl));

CHKERRQ(SNESGetConvergenceHistory( snes,PETSC NULL,PETSC NULL,&Shistl));

(see [BBE+04, BBG+01] on how to process/interpret convergence history).

B.3 Residual evaluation routine: Form Function
PetscErrorCode Form Function(SNES snes, Vec x, Vec f, void *ctx)
{PetscFunctionBegin;

// Extract pointer to your class for computation of residual:

Your RES Class *ctx class = reinterpret cast<Your RES Class*>(ctx);

// Extract a pointer to residual vector:

PetscScalar *ff; CHKERRQ(VecGetArray(f,&ff));

// Given a pointer to residual vector ff, and solution vector x, compute and return residuals:

CHKERRQ(ctx class->Form Function(x,ff));

CHKERRQ(VecRestoreArray(f,&ff));

PetscFunctionReturn(0);}
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B.4 Preconditioning setup routine: Precond SetUp

PetscErrorCode Preconditioning SetUp(PC pc) {PetscFunctionBegin;

// Extract pointer to your class for PBP preconditioning:

Your PBP Class *ctx class; PCShellGetContext(pc,(void**)&ctx class);

// Call your preconditioning setup routines (if and whatever is needed)...

PetscFunctionReturn(0);}

B.5 Preconditioning routine: PBP precondition

PetscErrorCode PBP precondition(PC pc, Vec x, Vec y) {PetscFunctionBegin;

// Extract pointer to your class for PBP preconditioning:

Your PBP Class *ctx class; PCShellGetContext(pc,(void**)&ctx class);

// Call your preconditioning:

// Basically, given x (→ δ �Y) apply preconditioning on it and return the result as y (→ δ �XV = P−1δ �Y)...

// For no-preconditioning:

VecCopy(x,y);

PetscFunctionReturn(0);}
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Equiation of state, 7

ESDIRK, 105, 106
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JFNK, 16, 33, 110, 111

jump conditions, 11

Krylov, 111

Krylov subspace, 112

Krylov subspace iterations, 112

L-stability, 105

Laplacian, 29

mass-energy matrix, 29

mass-energy wavenumber matrix, 53, 57
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Picard iteration, 84

Picard iterations, 42

PISO, 92

Pressure correction P
′
HE, 60

pressure-correction Helmholtz equation,

51
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PRIME, 99
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RETRAN, 24

Riemann solvers, 24

Runge-Kutta, 20
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TRAC-BF1, 16
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Trial subspace, 112

Two-fluid equations, 13

unexpanded form, 17

Velocity stabilizer, 51
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virtual mass, 15

virtual mass matrix, 16
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Volume fraction, 7
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